简介:文[1]、文[2]从“距离”的角度对“两个定点相关联的轨迹问题”进行了详尽而严密的讨论,拜读之后受益匪浅.由于“距离”与“斜率”同属平面解析几何的两个基本量,这就给利用“斜率”来研究轨迹问题创造了可能性;而对于平面上的一个动点与另外两个定点之间的位置关系,也确实可以从其连线斜率的角度来加以反映.所以,本文拟以直线“斜率”之间的定量关系为视角,对两个定点相关联的轨迹问题进行一番新的探究.
简介:在高三数学复习中,解题教学是重要组成部分.而解析几何作为高中数学课程的重要内容,是历年高考的热点,同时更是学生学习的一个难点.因为它涉及大量的参变量处理,运算复杂,学生处理这类问题总是虎头蛇尾,有很强的挫败感,丧失学习兴趣,从而达不到高效复习的教学效果.在此,笔者以一道高三一轮复习中的模拟试题为例,对解析几何中的定值定点问题进行探究,志在帮助读者进行归纳,通过类比的探究学习,找到解决此类问题的通性通法,以供读者参考.
简介:研究一类具有脉冲预防接种和时滞的乙肝模型,考虑了疾病的垂直传染,获得了再生数R1,R2,证明了R1<1时,系统存在无病周期解,且是全局渐近稳定的,当R2>1时,系统的疾病将持续并发展为地方病.
简介:建立并分析了一类具有垂直传染和预防接种的SEIR传染病模型,得到了该模型的基本再生数.通过对基本再生数的讨论和分析,得到了该模型的平衡点的稳定性和持续性.
简介:本文讨论总人口规模变化和带接种疫苗的年龄结构肺结核传染病模型,给出了该模型增值数的显式表达式(R)(ψ,λ)(λ为非病染人口的增长指数),证明了若(R)(ψ,λ)<1,则无病平衡态是线性稳定的,若(R)(ψ,λ)>1,则无病平衡态是不稳定的.
也谈“两个定点相关联的轨迹问题”
一道解析几何定值定点问题的探究与推广
带脉冲接种和垂直传染的时滞乙肝模型
一类具有垂直传染和预防接种的SEIR传染病模型
总人口规模变化和带接种疫苗的年龄结构TB传染病模型的再生数