学科分类
/ 4
72 个结果
  • 简介:采用纯Mg、Zn、Ca粉末和纳米羟基磷灰石(nHA)粉末,通过粉末冶金方法制备Mg-5Zn-0.3Ca/nHA生物复合材料,研究不同nHA增强相含量(1%、2.5%和5%,质量分数)对Mg-5Zn-0.3Ca合金腐蚀性能的影响。通过模拟体液浸泡试验和电化学技术测试其耐腐蚀性。结果显示,添加1%和2.5%的nHA提高镁合金的耐腐蚀性,这是因为生物活性nHA促进稳定的磷酸盐和碳酸盐表面沉积层的形成,从而提高纳米复合材料的耐蚀性。然而,在镁合金中添加更高含量的nHA作为增强相时,表面沉积层的密度增加,导致局部腐蚀产生的气体无法及时排出而聚集在沉积层下,减小层与基体的粘着力,导致耐腐蚀性能下降。对镁合金及其纳米复合材料的间接细胞毒性评价表明其浸提液无细胞毒性,添加1%nHA的纳米复合材料的测试结果与阴性对照组几乎相似。

  • 标签: 粉末冶金 金属生物复合材料 腐蚀
  • 简介:《新材料产业“十二五”发展规划》(以下简称《规划》)明确提出,在“十二五”期间,将集中力量组织实施一批重大工程和重点项目,突出解决一批应用领域广泛的共性关键材料品种,提高新材料产业创新能力,加快创新成果产业化和示范应用,扩大产业规模,带动新材料产业快速发展。其中“新型节能环保建材示范应用专项工程”是10类重大专项工程之一,界定的主要内容为“组织推广400MPa以上高强度钢筋、高效阻燃安全保温隔热材料,新型墙体材料、超薄型陶瓷板(砖)、无机改性塑料、木塑等复合材料.Low-E中空/真空玻璃.涂膜玻璃、智能玻璃等建筑节能玻璃。提高建筑材料抗震防火和隔音隔热性能,加快绿色建材产业发展,扩大应用范围,推动传统建材向新型节能环保建材跨越”。为更好地了解《规划》确定的重大专项工程相关组织实施情况,记者选取“新型节能环保建材示范应用专项工程”中的“木塑复合材料”,特意采访了北京化工大学“木塑复合材料”研究领域及组织推广方面的徐日炜副教授.牛茂善博士和廖延君高工等相关专家。

  • 标签: 木塑复合材料 新材料产业 北京化工大学 工程 木塑材料 专家
  • 简介:利用PVA碳源包覆、HF酸刻蚀和沥青二次包覆方法制备多孔珊瑚状硅/碳复合负极材料,得到沥青含量分别为30%、40%和50%(质量分数)的3种硅/碳复合材料样品。采用XRD和SEM分别对复合材料的组成和形貌进行表征,并采用电化学测试手段对其性能进行测试。结果表明,经二次沥青包覆后,复合材料的电化学性能得到明显提高。当二次包覆的沥青含量为40%时,在100mA/g的电流密度下,该样品第二次充放电循环的放电容量达到773mA·h/g,经60次循环后,放电容量仍然保持在669mA·h/g,其容量损失率仅为0.23%/cycle。因此,调整二次包覆碳含量可明显改善复合材料的循环稳定性。

  • 标签: 硅/碳复合材料 二次包覆 珊瑚状结构 负极材料 锂离子电池
  • 简介:采用纯Al片表面浸Zn后再电镀厚Cu层的方法制备Cu/Al层状复合材料。在473~673K温度范围内对该复合材料进行退火,研究退火过程中Cu/Al界面扩散与反应、界面金属间化合物(IMCs)层的长大动力学以及Cu/Al层状复合材料电阻率。结果表明,经过473K、360h的退火处理,未观察到Cu.AlIMCs层,显示Zn中间层能有效抑制Cu/Al界面扩散。可是,当复合材料经573K及以上温度退火时,Zn层中的Zn原子主要向Cu中扩散,从Al侧到Cu侧形成CuAl2/CuAl/Cu9Al4三层结构的反应产物。IMC层遵循扩散控制的生长动力学,Cu/Al复合材料的电阻率随退火温度及时间的增加而增大。

  • 标签: Cu.Al金属间化合物 层状复合材料 电镀 界面反应 生长动力学 电阻率
  • 简介:基于化学镀Ni工艺,研究Sn-3.5Ag-0.5Cu合金在Ni-P(-SiC)镀层/SiCp/Al基体上的润湿行为,分析镀层的显微结构和Sn-3.5Ag-0.5Cu/Ni-P(-SiC)镀层/SiCp/Al体系的润湿和界面行为。结果表明,SiC颗粒均匀地分布在镀层中,且Ni-P(-SiC)镀层与SiCp/Al复合材料之间没有界面反应。Sn-3.5Ag-0.5Cu对Ni-P、Ni-P-3SiC、Ni-P-6SiC和Ni-P-9SiC镀层/SiCp/Al基体对应的最终接触角分别为~19°、29°、43°和113°。在Sn-3.5Ag-0.5Cu/Ni-P-(0,3,6)SiC镀层/SiCp/Al界面处形成含有Cu、Ni、Sn和P的反应层,其主要包含Cu-Ni-Sn和Ni-Sn-P相。此外,熔融的Sn-Ag-Cu合金可以通过Ni-P/SiC界面渗入Ni-P(-SiC)复合镀层与SiCp/Al基体接触。

  • 标签: Ni镀层 Sn-Ag-Cu合金 SICP/AL复合材料 润湿 显微结构 界面
  • 简介:研究了通过模压铸造方法制造的氧化铝纤维与碳化硅颗粒混合增强铝基复合材料的干摩擦磨损性能。分别在室温、110℃,以及150℃条件下,进行了恒速0.36m/s(570r/min)的销盘式摩擦磨损实验。采用扫描电子显微镜观察干磨损表面特征,采用Arrhenius作图法研究相对磨损率,以便于进一步研究磨损机制。此外,讨论了纤维的方向性和纤维与颗粒的混合比作用。

  • 标签: 金属基复合材料 干滑动摩擦 耐磨度 摩擦系数
  • 简介:研究热挤压Al5083/B4C纳米复合材料的显微组织表征和力学行为。Al5083和Al5083/B4C粉末在氩气气氛和旋转速度400r/min条件下球磨50h。为提高伸长率,将球磨粉末与30%和50%(质量分数)平均粒径>100μm和<100μm未球磨粉末进行混合,然后进行热压和热挤压,挤压比为9:1。采用光学显微镜、扫描电子显微镜、能谱、透射电子显微镜、拉伸和硬度测试研究了热挤压合金。结果表明,机械球磨和B4C颗粒使Al5083合金的屈服强度从130MPa提高至560MPa,但伸长率急剧下降(从11.3%降至0.49%)。添加平均粒径<100μm未球磨颗粒可提高合金的塑性但降低拉伸强度和硬度,而添加平均粒径>100μm未球磨颗粒同时降低拉伸强度和塑性。随着未球磨颗粒含量的增加,断裂机理从脆性断裂转变为韧性断裂。

  • 标签: Al5083合金 金属基复合材料 碳化硼 多尺度复合材料 热挤压 机械球磨
  • 简介:在高能超声场下利用熔体原位反应制备TiB2/Al-30Si复合材料;利用XRD、SEM及干磨损试验研究此复合材料的显微组织和磨损性能。结果表明:在高能超声场作用下,原位TiB2颗粒在铝基体中分布均匀,形貌为圆形或四边形,尺寸在0.1-1.5μm之间。初生硅的形貌为四边形,平均尺寸为10μm。随着高能超声功率的增加,Al-30Si基体合金及TiB2/Al-30Si复合材料的硬度明显提高;特别是当超声功率为1.2kW时,复合材料的硬度达到412MPa,是基体合金的1.3倍。复合材料的磨损性能得到明显提高,载荷的变化对复合材料的磨损量影响不大。

  • 标签: TiB2/Al-30Si复合材料 熔体原位反应 高能超声场 磨损性能
  • 简介:2009年5月10日,由陕西省科学技术厅组织,咸阳市科技局主持,在陕西生益科技有限公司召开了对该公司研制的“S2600E复合基覆铜箔层压板”的科技成果鉴定会。与会专家听取了技术研究报告等相关汇报,进行了资料审查、现场考察、质疑答辩,经充分讨论后鉴定委员会同意该项目通过科技成果鉴定。

  • 标签: 科技成果鉴定会 覆铜箔层压板 专家鉴定 陕西省 复合基 股份
  • 简介:在80%Al-20%CuO(质量分数)体系中,通过原位反应法制备Al2O3p-Al复合材料。采用不同方法研究CuO颗粒粒度对复合材料合成温度和显微组织的影响。结果表明,CuO颗粒粒度对Al-CuO体系的完全反应温度有显著影响:含有粒度小于6μmCuO颗粒样品的完全反应温度比含有粒度小于100μmCuO颗粒样品的完全反应温度低200°C。当反应温度低于某一临界值时,原位Al2O3颗粒和Al基体之间不能完全结合;当温度高于某一临界值时,原位Al2O3颗粒的形貌从棒状转变成近球形。这两个临界温度受CuO颗粒粒度的影响:含有粒度小于6μmCuO颗粒样品的临界温度比含有小于100μmCuO颗粒样品的临界温度低100℃。

  • 标签: CUO 颗粒粒度 反应温度 Al2O3p-Al复合材料
  • 简介:以Ti+Ni+B4C粉末混合物为原料,利用激光熔覆技术在TA15钛合金基材表面制得TiB-TiC共同增强TiNi-Ti2Ni金属间化合物复合涂层。采用OM、SEM、XRD、EDS及AFM等手段分析激光熔覆涂层的显微组织及磨损表面,测试涂层的室温干滑动磨损性能。结果表明,激光熔覆TiB-TiC增强TiNi-Ti2Ni金属间化合物复合涂层熔覆具有独特的显微组织,菊花状的TiB-TiC共晶均匀分布在TiNi-Ti2Ni双相金属间化合物基体中。由于高硬、高耐磨TiB-TiC陶瓷相与高韧性TiNi-Ti2Ni双相金属间化合物基体的共同配合,激光熔覆涂层表现出优异的耐磨性。

  • 标签: 金属间化合物复合材料涂层激光熔覆磨损
  • 简介:使用SiC网络陶瓷骨架增强的6061铝合金复合材料(SiCn/Al)制动盘可以减少高速列车的质量。采用有限元(FE)和计算流体动力学(CFD)方法计算在300km/h速度下实施紧急制动过程中考虑气流冷却条件下SiCn/Al制动盘的热和应力。分析制动器总成及其界面的设计特点时考虑了传导、对流和辐射这三种传热的模式。结果表明,具有较高对流系数的气流冷却不仅降低制动中的最高温度,也降低了温度梯度,因为气流加速了制动盘上较热部分的热量散失。有效的气流冷却可以减少制动盘上热斑的形成和盘体的热变形。有无考虑气流冷却时,实施紧急制动后,制动盘最高温度分别为461℃和359℃。有无考虑气流冷却时,制动盘的等效压力可分别达到269和164MPa。然而,在实施紧急制动时,制动盘表面的最大应力可能超过材料的屈服强度,这可能导致在不带冷却时制动盘的塑性损伤累积。模拟结果与实验结果相一致。

  • 标签: 有限元法 制动盘 共连续SiC/6061复合材料 热分析 气流冷却