学科分类
/ 17
336 个结果
  • 简介:本文根据ThierryBourbieetal建立的测定致密岩心的渗透率的装置,交换相应的数学模型中的边界条件和附加条件位置,得到了相应正问题的解析解.尔后,运用偏微分方程反问题中的系数反演方法,构造出了反演渗透率的关系式,在此基础上,运用不动点定理讨论了解析反演解的存在性与唯一性.反演的结果表明:只要在L端持续测量t1时间间隔,则所给的附加条件可以唯一确定渗透率.

  • 标签: 渗透率 数学模型 边界条件 反问题 解析反演 不动点定理
  • 简介:给出了一Toeplitz矩阵特征值的几种解法,利用复数域上矩阵的特征值的性质,建立并证明了一组三角函数恒等式.

  • 标签: 解法 特征值 恒等式
  • 简介:利用赋范线性空间x的凸性模定义,以及凸性模的单调性及半紧性条件,研究了渐近非扩张映射不动点的三步迭代法.减弱了许多条件,从而推广了同类问题的某些结果.

  • 标签: 三步迭代法 渐近非扩张映像 半紧性
  • 简介:通过使用Hammastein积分方程和锥上的不动点定理对于一含时间奇异性的二阶非线性Dirich.1et问题建立了三个局部存在定理.主要结论表明只要非线性项的主要部分在某些有界集合上的高度是适当的此问题具有n个正解,其中竹是一个任意的自然数.

  • 标签: 非线性常微分方程 边值问题 正解 存在性 多解性
  • 简介:polarizableCarnot组的一些新性质被给。由在thepolarizableCarnot上选一个合适的常数为非分叉Dirichlet问题的一个班的一个重要答案,组被构造。因此,correspondingnon同类的Dirichlet问题的多答案性质被证明,在famousAlexandrov-Bakelman-Pucci类型估计的L~Q标准可能的最好被讨论。

  • 标签: 可极化 CARNOT群 非散度型方程 非平凡解
  • 简介:以一抽球模型中由两两独立不能推出相互独立为基础,导出只由单色球和全色球构成的抽球模型中,抽到的球上的颜色两两独立的充要条件;然后得到并为必然事件的”个随机事件相互独立一个必要条件,并构建抽球模型中抽到的球上的颜色相互独立的球色彩结构.

  • 标签: 随机事件 抽球模型 两两独立 相互独立
  • 简介:本文讨论了一满足Lipschitz条件的非线性时滞系统的镇定与跟踪控制问题.基于非线性状态反馈控制器,利用Lyapunov—Krasovskii泛函和矩阵理论,得到了系统时滞相关全局渐近镇定的新判据,并且保证了输出和状态跟踪控制的误差全局渐近收敛于零.本文推广了文献所得到的结论.因此,本文所研究的模型及所给出的判定条件更具有一般性和实用性.

  • 标签: 非线性时滞系统 渐近镇定 跟踪控制 状态反馈控制 时滞相关
  • 简介:讨论了非经典反应扩散方程ut-△ut-△u=f(u)+g(x)当非线性项满足临界指数增长时,该方程在强拓扑空间H2(Ω)∩H10(Ω)中的指数吸引子的存在性.特别的,通过证明指数吸引子的存在性,可知文献[7,12,14]中的强拓扑空间中的全局吸引子有有限的分形维数.

  • 标签: 非经典扩散方程 指数吸引子 临界指数
  • 简介:确立了某类分块矩阵[M(11)M12XM21YM23ZM32M33]的最大秩公式,其中,X,Y和Z是三个受限于四元数线性矩阵方程A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2的变量矩阵.作为该公式的一项应用,我们推导出上述矩阵方程解集等同于某类四元数三次矩阵方程组A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2,XYZ=J解集的条件.

  • 标签: 四元数域 分块矩阵 线性矩阵方程 最大秩 三次矩阵方程 解集
  • 简介:在MengerPN-空间,引入(C_0)压缩型算子半群的有关概念.研究了两混合单调算子新的公共不动点的存在与唯一性,不要求算子具有任何紧性、凹凸性和连续性,从而获得一些新的结论,改进和推广Banach空间中的有关研究结论.

  • 标签: 算子半群 混合单调算子
  • 简介:利用K泛函的定义首次研究了在Besov空间中,一三角插值多项式的逼近和饱和问题,确定了逼近的饱和与饱和阶.

  • 标签: BESOV空间 饱和类 饱和阶 三角插值
  • 简介:在控制理论和控制工程中,镇定控制器的设计是一个经典问题。许多有关这个问题的结论一般都是针对线性系统。对于非线性系统,很少见到有构造性结果能用于控制工程中。本文针对一广泛的非线性控制系统,我们构造了一些控制器,这些判据在工程实际问题中将具有一定的指导意义。

  • 标签: 分离变量 非线性离散系统 镇定控制器 状态反馈控制
  • 简介:在L^p(1〈P〈∞)空间上研究板几何中一具反射边界条件下各向异性、连续能量、均匀介质的奇异迁移方程.证明其奇异迁移算子产生C0半群和该半群的Dyson-Phillips展开式的二阶余项是紧的,且得到了该算子的谱在区域Г中由具有限代数重数的离散本征值组成等结果.

  • 标签: 奇异迁移方程 反射边界条件 C0半群 二阶余项