简介:继去年在中考题中注入应用性与探索性问题之后,吉林省在今年的中考题中仍然非常重视对应用性、操作性、探索性这些新题型的考查.今年还特别把探索性问题作为压轴题放在非常重要的地位,可见,在日益重视素质和能力考查的今天,探索性问题已成为中考新的热点之一.探索性问题是指数学问题中的题设条件或结论不完整;或缺少结论;或需判断符合某个条件的图形是否存在等.解这类问题,需要对数或形仔细观察、分析、判断以及论证.在谈到探索性问题时,一般总是把它归纳为下述三类:1.探索结论型,2.探索条件型,3.探索存在型.该卷的34题基本属于第一类,但它又不拘泥于一般的探索结论,而是在让几何图形运动变化的情况下,要求学生去探索和
简介:利用分段线性与三次Hermite插值基函数以及连续模概念,分别推导出分段线性与三次Hermite插值多项式序列一致收敛于被插函数.
简介:本文将文献中的求解二维的有交界面的椭圆型方程的浸入界面方法推广到界面及间断条件都由定义在界面某个邻域的网格函数点上的函数隐式提供的情形,给出了一种间断条件捕捉格式。它特别适合干隐式界面跟踪法如水平集方法。对原浸入界面方法中的界面间断关系,确定不规则点差分格式的系数的代数方程组和修正项都针对新的情形进行了相应的修正。该格式利用标准的二阶拉格朗日插值计算间断函数沿界面的导数,避免了文献中的用样条函数的局部界面重构,易于执行。数值计算验证了该法的关于最大模的二阶收敛性。