简介:采用两步熔盐法于900~1000℃下在C/C复合材料表面制备MoSi2-SiC复合涂层,即在含仲钼酸铵的熔盐中制备Mo2C涂层,然后通过熔盐渗硅生成MoSi2-SiC复合涂层。用X射线衍射(XRD)、扫描电镜(SEM)与能谱分析(EDS)等方式研究涂层的组织结构,并测试涂层在1500℃下的抗氧化性能和抗热震性能。同时对涂层氧化后的组织结构进行分析。结果表明:复合涂层主要由MoSi2和SiC两相组成,涂层与C/C基体结合处仅有少量未反应的Mo2C。涂层整体致密,与基体结合良好,均匀地包覆整个基体表面,厚度约为100μm。涂层样品在1500℃的静态空气中氧化42h后,涂层表面仍保持完整,质量损失率仅为2.79%。1500℃下经历30次热震实验后,样品的质量损失率为1.96%,涂层具有良好的抗氧化和抗热震性能。
简介:以Ti-Al的3个化合物相(Ti3Al、TiAl和TiAl3)及Ti3Al8Mn为对象,采用密度泛函的赝势平面波法,在优化驰豫的基础上计算其电子结构和弹性模量,系统分析成分对各相电子结构的变化及脆性的影响。结果表明:Al含量逐步增多导致Al2p—Ti3d成键并抑制Ti—Ti键,使共价键以及成键的各向异性增强,因而使合金脆性增大;Mn替代Al位掺杂后,可减少Al—Al共价键,抑制Al2p—Ti3d成键并增强Mn与Ti的3d电子层杂化程度,降低由Al—Al共价键和Al2p—Ti3d杂化键形成所带来的键的空间各向异性和高位错能垒,进而改善合金的室温脆性。
简介:采用DH.2080型超音速等离子设备将粒度53~106lam的高铝铜合金粗粉喷涂到45”钏表面制备涂层。在高铝铜合金粉术中加入微量元素Ce和B,研究Ce和B对高铝铜合金粗粉的超音速喷熔性能以及涂层组织结构的影响。结果表明:末加入元素Ce和B的涂层氧化严重,尤其是在界面处聚集大量氧化物,涂层和基体不能实现有效结合,涂层中较多的氧化物和孔隙隔离层流片熔结,并且涂层成分偏析严重。加入微量稀土元素Ce和B后,喷熔层组织细小均匀,成分分布均匀,涂层氧化程度大大减小,涂层和基体结合良好。Ce和B的加入还可改变涂层组织相的彤成规律,即由原来的非平衡结晶方式转变为平衡结晶方式。此外,Ce和B的加入使涂层硬度由362HV提高到432HV。
简介:采用水热法制备表面活性剂聚甲基丙烯酸-季戊四醇四-3-巯基丙酸酯(PTMP-PMAA)修饰的具有光热效应的纳米WO3-x粉末,通过X射线衍射(XRD)分析、透射电镜(TEM)观察、X射线光电子能谱(XPS)分析、傅里叶变换红外光谱(FT-IR)分析以及紫外-可见吸收光谱(UV-Vis谱)分析及光热性能测试等,研究所得纳米粉体材料的结构及其在不同浓度与pH值下的光热性能。结果表明,水热法制备的WO3-x粉末为球形的非整比结构的W17O47,粒径小于10nm。随WO3-x的pH值降低或质量浓度降低,粉末的紫外吸光度增加,光热效应提高。pH值为6.4、质量浓度为800μg/mL的WO3-x经光热转换后,可实现在5min内约19℃的温度上升。考虑到人体体温为37℃,肿瘤部位的pH值为6.0~6.5之间,此质量浓度下纳米WO3-x粉末可用于光热治疗并实现对肿瘤细胞的杀伤效果。
简介:以金属Zr、Cu和Al为原料,通过真空熔炼和气体雾化制备Zr-Cu-Al合金粉末,再经高能球磨得到Zr50Cu40Al10非晶合金粉末。采用氮/氧分析仪、X射线衍射仪(XRD)、扫描电镜(SEM)和热分析仪(DSC)对其非晶形成能力及晶化行为进行研究。结果表明,球磨120h后可获得Zr50Cu40Al10非晶合金粉末,且随球磨时间增加,粉末的颗粒尺寸逐渐减小,90h后达到亚微米级。球磨过程中由于铁的增加,使合金的结构"混乱度"增加、负混合热增大,因而热稳定性增强,其过冷区间ΔTx为62K,约为雾化法制备的非晶合金粉末的2倍。此外,采用非等温晶化方法,用KISSINGER方程计算出机械合金化Zr50Cu40Al10非晶合金的玻璃转变和初始晶化的表观激活能分别为152.6kJ/mol和172.4kJ/mol,远小于相应的气体雾化法制备的Zr50Cu40Al10非晶合金粉末表观激活能,其原因是粉末中氧含量和体系自由能较高。
简介:世界化工领域权威杂志《美国化学工程师学会会志》发表了河南大学特聘教授陈东升博士课题组论文“硅胶骨架的亚氨基二乙酸离子交换剂及在镍湿法中的应用”。论文审稿人评价该项目研究具有重要意义。这标志着我国在复杂多元金属矿产资源高效利用的研究方面取得重大突破。随着工业化进程的加速,我国对有色金属的需求量也不断加大。作为一种战略稀缺金属,镍广泛应用于合金制造、镍氢电池等专业领域。多年的开采致使硫化镍矿日益枯竭,人们只好将目光转向占据全球镍存储量70%的氧化镍矿。但氧化镍矿主要采用的湿法提取技术,不仅分离效率低,而且有机萃取剂是易燃易爆的毒害性物质。如何开发出高效、环保的氧化镍矿冶炼工艺成为当前镍资源综合利用的迫切需求。