简介:为了协调高速铁道车辆的运动稳定性与曲线通过性能之间的矛盾,本文采用多目标优化方法对一种高速铁道车辆的关键悬挂参数进行了优化处理.采用多体动力学技术建立了某型高速铁道车辆62个自由度的动力学模型,模型考虑了轮轨接触几何非线性、轮轨蠕滑非线性和阻尼非线性等.采用ADAMS—Matlab联合仿真对车辆悬挂系统进行参数化改造,使弹簧刚度和阻尼系数均可调.采用基于遗传算法的多目标优化方法对悬挂参数进行优化,使车辆模型能同时满足3种动力学指标.对比优化前后模型的动力学性能可以发现:模型的运动稳定性和曲线通过性能得到显著提高,虽然运行平稳性有小幅降低,但仍能保持在优良的工作状态.
简介:正如傅里叶变换采用正弦基,单频信号能够在频域形成峰值,分数阶Fourier变换采用线性调频基,线性调频(LFM)信号能够在分数阶Fourier域上实现聚焦,利用此聚焦性通过搜索峰值可实现LFM信号检测和参数估计.通常采用步进式搜索方法,效率低下.为了克服该缺点,通过对分数阶Fourier域优化问题本质的研究,将混沌优化算法引入到分数阶Fourier域极值搜索中.仿真结果表明:本文的方法优于传统的步进式搜索法.
简介:利用参数互异的Fitzhugh—Nagumo神经元构建了含耦合时滞的无标度神经元网络模型,通过数值模拟的方法,提出研究参数异质性和耦合时滞影响下神经元网络的共振动力学.结果发现,当耦合项中不含时滞时,适中的参数异质性能够使得神经元网络对外界弱周期信号的响应达到最优,即适中的参数异质性能够诱导神经元网络的共振响应,而且异质性诱导共振对耦合强度具有鲁棒性.更重要的是,耦合时滞对参数异质性作用下神经元网络的共振特性也有着显著性影响.当时滞约为信号周期的整数倍时,神经元网络能够周期性地出现共振现象,即适当的耦合时滞能够诱导神经元网络的多重共振,而且这种现象在异质性参数的适当范围内都能明显出现.
简介:建立随机风作用下高速列车动力学参数的可靠性优化设计方法.首先考虑自然风的脉动特性,采用Cooper理论和谐波叠加法模拟随车移动点的脉动风速,给出随机风作用下高速列车非定常气动载荷的计算方法.然后建立高速列车车辆系统动力学模型,计算高速列车的运行安全性,并基于可靠性理论,给出随机风作用下高速列车失效概率的计算方法.在此基础上,以高速列车动力学参数为优化设计变量,以失效概率和轮轴横向力为优化目标,采用多目标遗传算法NSGA—II进行动力学参数的自动寻优,建立随机风作用下高速列车动力学参数的可靠性优化设计模型.经可靠性优化计算,高速列车的失效概率由原始的0.4884降低为0.1406,轮轴横向力由原始的45.13kN降低为43.01kN.通过优化高速列车动力学参数可以显著改善随机风作用下高速列车的运行安全性.