简介:流动分配在采出水回注作业中起重要作用。当注水层位含有独立的水力单元(这些水力单元能够吸收部分或全部注水量)时,这种情况确实如此。这些水力单元可能被不渗透阻挡层、页岩分隔开,或者这些水力单元的最小水平应力不同。在正常操作条件下,在一个或更多这些水力单元内产生的裂缝不连通。在一些水力单元中的裂缝增长依赖于另一些水力单元中裂缝增长或阻碍的地方,裂缝增长变成了与这两种情况有联系的问题。裂缝阻碍可能是由于裂缝中的固体和油沉积造成的,裂缝中的固体和油沉积会堵塞裂缝尖端并且损害裂缝面。堵塞将减小能得到的裂缝实际总长度。如果对此最初不加以考虑或进行设计,这些情况将变得难以控制并且会导致不良影响,例如无效波及或无法控制的裂缝增长。
简介:本报告论述了在一口水平井中,对一个两层气藏所获得的压力恢复数据的解释。该水平井所钻到的岩层是粒状灰岩,上覆于一厚层低渗透性的白云岩之上。为了确定井筒和气藏的一些性质,实施了措施前的压力恢复试井。所获参数是,水平井段的有效长度,表皮效应和单层水平渗透率和垂直渗透率。分析解释主要依赖于双对数压力和导线曲线,来确定储存系数和传导率的重要变化以及分离出适当的数据段进行直线分析。特别要强调的是,在压力导数计算中专门考虑了开采速度变化的影响。在本文献中发表的方程用于计算不同流动状态的开始和结束,从而获得所需参数,以提供分析的一致性和可靠性。压力恢复数据表明的特征与层状系统理论是一致的。虽然早期存储系数增大,受上层高渗透性地层的影响,但终究还是整个系统作用的结果。由于在分析中作了总体考虑。就可能得到有效的所需参数。从结论看出,为产量作出贡献的水平段小于井筒长度,而且对地层的伤害是很轻的。分析计算出的渗透率与从岩心、模型、邻近井筒的试验所获数据结果是一致的,并且表明两层气藏有长期排流的可能性。
简介:随着像光导纤维分布式温度传感器这样的温度测量方法的发展,可以获得高精度的水平井连续温度曲线图。在智能完井中,采用现代温度测量仪可探测到分辨率大约为0.1下的微温度变化,该方法有助于诊断井下流体状况。由于水平井开采过程中吸入流体温度不受升高的地温变化的影响,所以,各相态(油、水、气)的初始温差都是因摩擦的影响所致。采气时,通常引起温度降低;而吸入水的井筒可能升温也可能降温。吸水层的温度较高是由于产层之下的温热含水层的温水侵入引起的(水锥进)。由于流体温度特征的差异,产出水的温度可能比产出油的温度低。如果油和水产自同一深度,当油和水在孔隙介质中流动时,由于摩擦作用,油的温度会比水的温度增加的更多一些,导致产出水比产出油的流入温度低一些。由于流入温度较高,水锥进的吸水层位的温度变化曲线相对比较容易探测,但水从与油同一深度突破可能不是太明显。本文中,我们举例说明了流入条件的范围,水或气吸入位置可以根据井的温度曲线图中所测量的温度变化来确定。采用数字井温预测模型(Yoshioka等,2005a),我们计算出了水侵条件下的温度变化。在计算过程中,我们假设,当生产井裸眼段的其它层位产油时,有一段剖面产水或产气。根据地层敏感性研究,我们提出了水和气相对产出率的预测结果,水和气的相对产出率由井筒温度曲线可探测的温度异常确定。通过将该模型与一口水平井的实际温度录井资料拟合。我们证实该模型可用于确定吸水位置。
简介:开发气藏与连通水驱之问的相互作用在规划气田的开采寿命和预测烃类抽提对环境产生的后果(如人为的地面沉降)中起着重要的作用。目前,借助先进的数字模型能够模拟系统气藏+水驱的动态,但是,最困难的任务之一是对人们不熟悉的含水层水文地质特征进行校正。在本文中,用具有校正参数的有限元素的流动模型模拟水驱流体动力学,以满足物质平衡方程。本文讨论了意大利Adiatic北部盆地两个气田的实例,指出了气藏几何形状在水驱动力学可靠地模拟中所起的作用。实例研究表明,气藏几何形状所起的许多作用常常被忽略了,例如,气田的采出水量以及气体和孔隙体积减少,这些变化对取决于实际气藏几何形状的水驱校正是非常重要的。研究结果表明,必需深入了解气藏的地质结构,以便准确地模拟水驱流体动力学,并预测出期望的气/油采出量和相关的人为地面沉降。
简介:干酪根是石油的原料,在原油形成之前可能经历漫长的改造和成岩期。一种普遍的假设是:排出油的总成分反映了这种渐进改造的诸多信息,而最初固定碳的原始生物信息大多损失掉了。但在大多数早期原油有机物中仅占一小部分的微量组分即生物标志化合物例外。俄罗斯Timan—Pechora盆地中大量原油和岩石提取物的烷烃和环异戊二烯烃馏分分析表明,作为大多数原油的主要组分的这类馏分是生物残体液化的直接产物,这些生物残体在生油点以前基本保存完好。因此,这类馏分的原始生物成分在原油馏分中保存下来了。采用有机地化中一种新的多变量数据分析方法,对俄罗斯Timan—Pechora盆地上一中古生界推定烃源岩中的242个油样以及83个岩石抽提物样进行了气相色谱分析。325个正构烷烃和环异戊二烯烃(总共24种)的分布可以用6个分别归因于特定生物供给源的端元组分的线性组合来表示。6个中有4个是主要的生油源(高等植物的蜡质、蓝藻细菌、微藻类和粘球形藻属微生物)。这些端元占了我们样品中正构烷烃和环异戊二烯烃的大部分。其余两种代表了储层中沉积和低水平生物蚀变期间原始有机物的二次生物蚀变(生物降解)的产物。每一个端元都由一个分析物谱所组成,其丰度以固定的比率和其它端元彼此相关。我们推测,每一种原始的端元都代表了一种耐久的生物聚合物的降解,这种生物聚合物为某类生物的细胞壁和隔膜。正构烷烃和环异戊二烯烃反映了它们的各种前体(即原始有机物源)的加权特征。如果大多数原油都是少数化学结构简单的生物聚合物的产物,那么就要对我们关于总有机碳重要性和油窗特性的许多假设重新进行审查。
简介:川北地区长兴组储集空间具有多样性和复杂性,溶蚀孔洞比较发育并且非均质性很强,常规测井在该地区的测井评价具有局限性。微电阻率扫描成像测井对于复杂岩性储层,特别是裂缝—孔洞型储层的测井评价具有其独特的优势。通过对川北地区长兴组储层裂缝、溶蚀孔洞的评价,总结出了电成像测井资料定性识别裂缝和孔洞的方法。对该地区3口井长兴组储层进行了缝、洞定量计算及对比分析,同时结合常规测井资料和取心资料以及其他成像测井资料如DSI、CMR、MDT等对该3口井进行了测井综合评价。试油结果进一步证实,电成像测井资料在该地区礁滩储层缝洞评价中的可靠性。
简介:30多年来,地质学家和地球物理学家一直利用平衡技术规范挤离压缩构造背景中的横剖面的解释。最后得到的解释质量通常直接与数据质量、解释人员的平衡和解释经验以及解释时间有关。为了能快速而有效地检测和预防挤离压缩构造中常见的横剖面平衡错误,我们将平衡技术通俗化并提供一些快速直观的技术。通过对上盘和下盘的断坡和断坪的周密研究,重点突出平衡技术中常见的几个难以解决的问题。这种分析有助于辨别断坡和断坪数目之间、对应断坡的地层和地层厚度之间以及沿断层位移的不一致性。这些技术在解释时间剖面或深度剖面过程的任一阶段中都具有突出优点,并且容易被学生、地质学家、地球物理学家和管理者所领会;然而,快速直观技术并非是万能技术,它们并不能保证所得出的新是一种唯一的和/或正确的横剖面解释,而是它们可以将解释人员的注意力集中于横剖面中需要解释和/或需要重新解释的可能有疑问的地方。