简介:我们介绍澳大利亚库珀和伊罗曼加盆地区域性盆地倒转、反应力体系变化和微裂缝形成之间成因联系方面的证据。垂向上叠置的库珀和伊罗曼回盆地分别形成于石炭纪-二叠纪和株罗-白垩纪,是澳大利亚主要的陆上油气产区。盆地在渐新世以来的倒转,导致部分地区数百米沉积岩厚度被剥蚀。在库珀-伊罗曼加盆地的微观岩心展示明显的、近水平方向的微裂缝(模型1)。这些天然裂缝均有粘土矿化作用,并且只出现在颗粒支撑的砂岩中,这暗示了颗粒边界的应力集中利于裂缝的形成。在大多数情况下,水平裂缝是封闭的,可能对岩石渗透率没有多大的作用。(sH>sv>sh)和逆断层(sH>sv>sh)之间的过渡型。最小水平应力(sh)和垂直应力(sv)大小相等,但是最大水平应力(sH)明显大于sh和sv。水平裂缝的形成需要有逆断层的应力体系(sH>sv>sh)。水平微裂缝的出现大致与最大倒转区一致。这种现象显示了,水平微裂缝的形成是由远场应力之间的反馈机制所驱动,这引起局部的陆内倒转并导致覆盖层的剥离,这翻过来又减低垂直应力的强度。与倒转有关的覆盖层的剥离可能足以助长逆断裂应力条件(sH>sv>sh)的形成,从而在盆地的倒转部分形成水平微裂缝。
简介:位于阿拉斯加北斜坡的Kuparuk河油田是北美洲最大的油田之一。大约有三分之一的原始石油地质储量在它的C砂岩中,该砂岩是浅海相砂岩,具有强烈的生物扰动和复杂的成岩作用特征。菱铁矿的含量变化很大,导致渗透率、孔隙度和毛细作用变化很大。C砂岩中的矿物学、孔隙度和含水饱和度的电缆测井解释是相对简单的,它提供了粘土、菱铁矿和海绿石含量,并说明了岩心的非均匀性。由于孔隙度一渗透率交会图中点的分布极端分散,要计算实际的渗透率曲线是非常困难的。在用测井孔隙度估计渗透率的地方,关键的孔隙度-渗透率转换关系是糟糕的,因为其结果没有再现岩心分析数据中存在的极端分散状态。油藏描述的最新研究,要求重新估价渗透率模型,以便用一种简单的方式按比例放大来预测需要的特性,并输入到地质孔隙模型中使用。现在已经开发出一种预报渗透率的新方法。它以密度测井(RHOB)和岩相为基础,随机选择数据子群的岩心体积密度值。对每隔半英尺的测井深度点,岩心体积密度值是随机重复选择的,多次重复直到滑动时窗内的平均密度值,在标称的0.05g/cc的预置容限内,与RHOB测井曲线匹配为止。然后,把与选择的岩心体积密度值对应的岩心孔隙度和渗透率值当作为每个深度点选定的最后结果。这个方法复制了岩心孔隙度和渗透率值的统计分布,获得了各半英尺深度点的数值。我们把测量深度转换为SSTVD,并将0.5ft取样间隔按比例放大为1ft和2ft取样间隔。按比例放大的渗透率值与逐井分析的岩心塞得到的kH相匹配,也与从观察许多井的最大流量得到的kH一致。在提供与其他测量的渗透率值匹配情况下,按比例放大的渗透率值也可用在地质孔隙模型上。
简介:为了识别三维地震数据和生产测井数据之间的非线性关系和映射,开发出了的一种综合方法。该方法在一个在产油田得到了应用。它采用了诸如地质统计和传统的模式识别等常规技术,并结合现代的软计算(softcomputing)技术(神经计算学、模糊逻辑学、遗传计算学和概率推理学等)。我们的一个重要研究目的,是在三维地震数据和现有的生产测井数据的基础上,利用聚类(clustering)技术确定最佳的新井井位。采用三种方法进行分类:(1)k-平均聚类;(2)模糊c-平均聚类;(3)识别相似数据体的神经网络聚类。在井筒周围可以识别聚类组(duster)与生产测井数据的关系,所得结果用于在远离并筒方向上重建和外插生产测井数据。这种先进的三维地震和测井数据分析与解释技术可用于:(1)确定生产数据和地震数据之间的映射;(2)在多属性分析的基础上预测油藏连续性;(3)预测产层;(4)优化井位。
简介:海因斯韦尔(Haynesville)页岩是分布在路易斯安那州西北部、得克萨斯州东部和阿肯色州西南部的五套富有机质沉积岩,其平均厚度为60-90m,埋藏深度-般都在3kin或更深,而且渗透率超低。海因斯韦尔页岩分布区,尤其是路易斯安那州的西北部地区,天然气勘探开发异常活跃。前人的热学-力学模型研究结果表明,侏罗纪时期的温度梯度是当前区域地热梯度值(25—350C/km)的两倍以上。因此,侏罗纪沉积地层在以往100m.y.间已经接近其当前的温度。利用地下资料,建立了基于对流和传导的热传输简单模型以及基于压实的流体流动简单模型,用于估算地质历史上海因斯韦尔页岩的温度、成熟度和流体压力。早白垩世的高热流值产生高地温梯度,并导致烃类的早期成熟。早白垩世的快速沉积作用使海因斯韦尔页岩内形成了明显的超压。但这种超压在地质历史上并没有得以保持,其原因是这套页岩地层厚度太薄,而且后来又经历过隆升和剥蚀作用。中到晚白垩世和晚古近纪的生烃作用再次产生了超压。然而,在绝大多数条件下,模拟得出的超压都没有超过破裂压力。
简介:为针对性地解决大天池气田井下油管在服役过程中的损伤问题,通过腐蚀检测、修井起出油管观察,对生产过程中的油管损伤进行实时分析并提供对策。结果表明:(1)产出流体的强腐蚀性及流体中杂质极易导致油(套)管腐蚀,使其承压能力不足,进而变形挤压油管,是生产中后期气井井下油管损伤的因素之一;(2)腐蚀过程中产生的垢物附着在油管内外壁,将产生持续的垢下腐蚀,导致井下油管穿孔、断落。据此,提出4条井下防护措施:(1)选取合适的油套管材质和油管结构,提高管串的抗损伤能力;(2)尽量排完入井液,避免产生井下腐蚀条件;(3)合理配产,尽量降低冲蚀影响;(4)定期检测井下管串,及时调整防护方案或更换油管。
简介:我们为砂岩中纤伊利石的形成构想了一种模型,其中高岭石是基本反应物,而钾来自原地钾长石颗粒的溶解或被输入到这一模型的基准构架中。利用除温度和时间外还考虑了饱和状态的阿雷尼乌斯方程,模拟了伊利石纤维的成核和生长。成核作用发生在孔隙壁上,同时可以确定白云母和碎屑伊利石是动力学性质有利的基质。为了考虑其他成岩作用对表面积和反应物体积的影响并为渗透率模拟提供输入参数,可以将这一模型与“试金石”(TouchstoneTM)模型结合起来。在两个数据集的基础上我们评价了这一伊利石模型的性能。一个是中挪威海域最高温度为108—173~C的侏罗系石英砂岩数据集,另一个是东南亚海域最高温度为157—182℃的岩屑砂岩数据集。采用同样的动力学参数,这一模型拟合了两个数据集测出的伊利石、高岭石和钾长石的含量。考虑到与碎屑混入有关的不确定性,预测的K—Ar年龄是符合现有数据的。虽然这些分析样品没有获得伊利石粒径数据,但挪威数据集得出的模拟雏晶厚度仍然与北海类似温度史样品0.004—0.012um的已发表测量结果相当。
简介:详细的生物标志物和轻烃地球化学资料证实,得克萨斯州中北部沃思堡(FortWorth)盆地的油气源岩以海相密西西比系巴尼特(Barnett)页岩为主,但也可能存在其它源岩。生物标志物资料表明,主要生油的巴尼特页岩属于海相,沉积于洋流上升作用很强但盐度正常的缺氧环境。2个露头样品和7口井的岩屑分析表明,巴尼特页岩有机相是变化的,有可能存在其它石油亚类。轻烃分析表明,部分油藏充注了大量陆源凝析油,从而造成了许多油样具有陆源和海-陆混源轻烃的特征。从轻烃资料可以看出,这里有一种生成了凝析油的次生烃源岩,它含有陆源和陆-海混源的有机质。生物标志物分析并没有揭示这种次生烃源岩的性质,这突出表现了在确定油气源岩时综合运用生物标志物和轻烃资料的重要性。沃思堡盆地的天然气是热成因的,而且似乎与石油一起都是由巴尼特页岩生成,但也有一部份天然气可能产生于石油的裂解。同位素资料表明还存在少量生物成因气。这里的天然气分布似乎具有地层分异性,储层越新含成熟气越少,同时储层越老含成熟气也就越多。但宾夕法尼亚系本德(Bend)群的储层除外,它所含的天然气遍及已观察到的所有成熟度。我们不能排除沃思堡盆地的其它源岩层位有成为局部重要生油气源岩的可能,例如史密斯威克(Smithwick)页岩。
简介:在萨斯奎汉纳/页岩山(susquehanna/shaleHills)观测站(SSHO),我们利用小角度和超小角度的中子散射(SANS/USANS)研究了正在风化的罗斯山(RoseHill)组页岩的超微尺度特征的演化。这里称为中子散射(NS)的SANS/USANS技术可以描述大小为3nm上下到几个微米的孔隙。利用NS研究了在山顶用气动钻获取的页岩碎片(“风化岩”)或手控螺旋钻获取的页岩碎片(“风化层”)。可以推测大约在20m深度溶蚀作用已使铁白云石在基岩中消失,而用于NS研究的所有页岩碎片都采自这一铁白云石溶蚀带的上方。NS研究证实,无铁白云石岩石的总体积有5—6%是由分隔的粒内孔隙构成的。在5m深度,孔隙度和表面积的突然增大对应于有关风化岩中长石溶蚀作用的开始,因而其主要成因可以归结为15000年前开始的冰穿边缘作用。在风化岩一风化层界面以下几十厘米处,由于绿泥石和伊利石开始发生溶解,所以孔隙度和表面积也有明显增加。这些黏土矿物的溶解反应促进了风化岩向风化层的转化。在整个风化层,页岩碎片的粒内孔隙连接成为较大的粒问孔隙,而散射特征也由深处的体分形变为接近地表的面分形。孔隙形态也由深处的各向异性变为最上部的各向同性,前者可能与早先的大地构造活动在岩石中形成的铅笔劈理有关,而后者的成因在于黏土的风化。在风化作用最强烈的风化层,高岭石和氢氧化铁发生沉淀,堵塞了一部分连通的孔隙。这些沉淀物的出现以及因黏土风化而使更多石英暴露出来,都对最上部样品的矿物一孔隙界面面积的下降有作用。这些观测结果符合SSHO的基岩一风化岩一风化层的转化,其原因在于:(1)有反应物(即水、氧气等)运移进入了原生孔隙和由构造事件和冰川边缘效应所形成的裂缝中;(2)矿物一水反应以及颗�
简介:为了测定不同泥浆体系所形成泥饼的粘附-粘滞强度(ACBS)和粘附-粘滞模数(ACM),开发研制了一种独特的测试程序和一套新型的测试装置。测试装置是一台Wyke—hamFarrance无级压缩机,测试时它将柱形压块嵌入泥饼基质一定深度,然后施加一个提拉力将压块从泥饼中拔出。有一个数字式仪表能记录加载和提拉过程中压块的嵌入深度和位移,同时有一台电子天平记录嵌入和提出过程中作为位移函数的压力和提拉力。此外,还有一个千斤顶可将泥饼提升到预定高度,而一个计算机数据自动采集系统则能记录测试数据并监测测试过程。实验测试结果表明,嵌入深度相同而成分不同的泥饼,其ACBS和ACM会有明显不同。提拉力的大小及其与嵌入面积减少量的关系曲线形状,受控于泥饼材料的粘附和粘滞力及其性质。电解质的存在能明显影响金属与泥饼以及矿物与矿物的结合力。阳离子的水合离子直径对泥饼的粘附和粘滞性质也有一定影响。泥饼基质中存在重晶石能够明显增大泥饼的ACBS和ACM,其原因可能是重晶石颗粒的填充和质量粘附效应以及分子间作用力。研究了三种降失水剂对NaCl-膨润土泥饼ACBS的影响,它们是改性淀粉、CMC和PAC。在NaCl-膨润土泥浆中加入CMC和改性淀粉,其泥饼的ACBS和ACM几乎没有变化,而在NaCl-膨润土泥浆中加入PAC,其泥饼的ACBS有一定增加,但ACM明显减小。这此测试结果在不同泥饼对钻具、扩眼器、稳定器、钻头以及斜井和水平井眼的钻屑间的结合力方面提供了极有价值的资料。这些测试方法可用于筛选钻井泥浆添加剂,而本文的研究结果则可用于设计有理想泥饼质量的钻井液。