简介:与氰化物镀Cu-Sn合金及电镀Cu-Sn合金相比,化学法制备Cu-Sn包覆层具有环境污染小,能耗低的特点。在含有硫酸铜、氯化亚锡、硫酸、表面活性剂、络合剂及稳定剂等成分的溶液中,通过置换反应在铁粉表面包覆一层Cu-Sn合金,研究包覆层的形貌和主要成分以及添加剂的适宜浓度范围。结果表明,在含有15-20g/LCuSO4.5H2O,35-40g/LSnCl2.2H2O,22-30g/LEDTANa2.2H2O,8g/L聚乙二醇,2.5g/L对苯二酚,0.3mol/LH2SO4的溶液中,获得的(Cu-Sn)/Fe复合粉末表面为金黄色,包覆层厚约2μm,Sn的质量分数为7%-8%,Cu-Sn合金均匀连续地包覆在铁粉表面。
简介:采用粉末冶金方法制备不同SiC含量的SiC/Fe-3Cu-C-2Ni-1.5Cr-0.5Mo复合材料,采用硬度计、扫描电镜、电子万能试验机、万能摩擦磨损试验机对材料进行测试,研究SiC含量对铁基合金密度、组织结构、力学性能和干摩擦磨损性能的影响规律,并探讨其摩擦磨损机理。结果表明:当SiC的加入量为0.5%~2%(质量分数)时,复合材料的密度和强度均降低,但硬度和耐磨性能显著提高;当SiC加入量达到5%时,复合材料的密度、强度、硬度及耐磨性能均大幅降低。SiC含量为1.5%的复合材料耐磨性能最佳并能保持良好的力学性能,有望在气门导管、传动小齿轮等机械零部件上得到运用。复合材料的磨损机理为粘着磨损和磨粒磨损。
简介:采用气体雾化法制备Fe-12Cr-2.5W-0.4Ti-0.25(Y2O3)铁基合金粉末,分别在该粉末中添加1%Al粉和1%Fe2O3粉,在1250℃下热挤压,随后在1050℃热处理。通过X射线衍射、扫描电镜和光学显微镜等研究Al和Fe2O3对铁基合金热挤压和热处理态显微组织的影响。结果表明:与基体合金相比,Al的添加可促进铁素体基体中元素的扩散,导致晶粒尺寸增大,同时由于Fe、Al互扩散系数的差异引起柯肯达尔效应,使合金孔隙度增大;添加Fe2O3后合金的孔隙度更大,氧化物和大量残余孔隙阻碍晶粒长大,因而晶粒尺寸减小。3种合金在1050℃进行热处理时晶粒的长大规律均满足BECK方程,添加Al可提高合金的晶粒生长指数,而添加Fe2O3则相反。
简介:采用喷雾造粒制备Fe2O3空心球团粒,团粒经过氢气还原得到中空Fe颗粒,通过扫描电镜(SEM)观察Fe2O3空心球团粒及其截面的形貌,研究还原时间对Fe颗粒形貌与截面形貌的影响;采用激光衍射粒度分析仪对Fe颗粒进行粒径分析;采用比表面及孔隙度分析仪表征Fe颗粒的比表面积;采用CSM-MCT显微硬度仪测量空心球状Fe颗粒球壁的硬度和弹性模量。结果表明:Fe2O3空心球团粒和Fe颗粒均为多孔中空球状结构,球壁上存在大量微孔,中空孔直径和球颗粒直径的比值在0.4~0.5;在650℃下还原,随着还原时间增加(4,5,6h),球壁晶粒逐步长大,中空球状Fe颗粒的比表面积和粒径逐步减小,球壁趋向致密,硬度和弹性模量提高。
简介:将真空烧结的铁基合金奥氏体化、油淬后,在600~700℃温度下进行回火处理,保温1h,空冷。测试回火后合金的硬度和冲击韧性,并用金相显微镜、X射线衍射(XRD)、扫描电镜(SEM)观察和分析合金的组织、结构与断口形貌,研究回火温度对铁基合金组织与力学性能的影响。结果表明:随回火温度升高,第二相碳化物粒子M23C6的含量(质量分数)基本保持不变,约为3.5%;碳化物M6C的数量大幅减少,平均尺寸明显减小,碳化物M6C的第二相强化效果降低,硬度下降,同时基体组织软化,冲击吸收功增大。回火温度为675℃时,铁基合金保持较高的硬度40HRC,冲击韧性较回火前提高11%。回火处理后的铁基合金断口形貌为典型的沿晶断裂。
简介:通过DSC-TG、TPR、XRD等测试手段,研究共沉淀法制备的铁钴铜复合草酸盐的热分解、煅烧和还原过程。结果表明:在氩气气氛中,铁钴铜复合草酸盐于213.05℃失去1.4个结晶水,在396.93℃直接分解成铁/钴/铜合金混合粉末;在400℃的空气气氛中铁钴铜复合草酸盐可以煅烧成铁钴铜复合金属氧化物,并且具有与四氧化三铁相同的晶体结构;在475℃的氢气还原性气氛中,铁钴铜复合金属氧化物被还原成具有FeCu4、Co3Fe7和CoFe三种物相的均匀Fe-Co-Cu合金混合粉末,由此证明铁钴铜复合草酸盐也可以通过煅烧+还原的方式制备得到铁钴铜合金混合粉末。
简介:采用铜粉、石墨粉和铁粉为原料,以Fe-74.8Mn-6.9C中间合金粉的形式加入Mn元素,制备粉末冶金Fe-xMn-(2?x)Cu-0.3C(x=0,0.2,0.4,0.6,0.8,1。质量分数,%)低合金钢,研究Mn含量对该合金组织与力学性能的影响。结果表明,合金组织由铁素体和珠光体构成。加入含Mn中间合金粉对混合原料粉末的压制性能没有明显影响。随Mn含量增加,合金中孔隙的数量增多,尺寸变大;合金密度先升高后降低,Mn含量为0.4%时合金密度最大,达到7.24g/cm3;合金硬度先升高后降低,Mn含量为0.6%时硬度最大;合金抗弯强度下降,冲击韧性升高,Mn含量超过0.4%时二者变化均较小。因此Fe-0.6Mn-1.4Cu-0.3C合金具有较好的综合性能,硬度(HRB)和冲击韧性分别达到57.4和8.80J/cm2,比Fe-2Cu-0.3C合金分别提高5.3和0.82J/cm2,材料呈部分韧性断裂特征。
简介:将Fe(60)(NbTiTa)(40)合金粉末与纯铁粉分别进行45h高能球磨,获得Fe(60)(NbTiTa)(40)非晶粉末和粒度约10μm的铁粉,然后通过放电等离子烧结制备Fe(60)(NbTiTa)(40)体积分数分别为5%、10%、15%和20%的Fe(60)(NbTiTa)(40)颗粒增强铁基复合材料,研究15%Fe(60)(NbTiTa)(40)/Fe混合粉末的烧结致密化行为和Fe(60)(NbTiTa)(40)非晶粉末含量对材料力学性能的影响。结果表明:Fe(60)(NbTiTa)(40)合金粉末经球磨45h后转变成非晶态,其过冷液相区达到112℃。通过SPS可实现混合粉末的快速致密成形,增强颗粒含量对复合材料的密度影响不大,材料的致密度在97.5%左右。非晶合金粉末的加入可细化基体相的显微组织,并且随Fe(60)(NbTiTa)(40)颗粒含量增加,基体相变得更细小和更均匀,复合材料的硬度和强度均显著增大。20%Fe(60)(NbTiTa)(40)/Fe材料的显微硬度为232HV,屈服强度和极限压缩强度分别为650MPa和743MPa。