简介:为了掌握洪湖水质未来的变化情况以及预防污染事件的发生,建立了一个BP神经网络水质指标预测模型。利用洪湖1990~2014年的水质指标实测数据作为学习样本,选取了pH、溶解氧(DO)、铵态氮(NH4+—N)、硝态氮(NO3-—N)、总氮(TN)、总磷(TP)6项指标作为预测参数,建立了BP神经网络模型,并运用该模型对洪湖水质指标进行了预测,同时引入一元线性回归模型与GM(1,1)灰色预测模型与该模型进行对比。结果表明,BP神经网络模型预测的水质指标的相关性系数都在0.998以上,平均相对误差都控制在2.5%以内,对单个指标的预测相对误差也都小于9%,明显优于一元线性回归模型和灰色预测模型;BP神经网络模型预测精度较高,预测速度快,能够相对准确地预测大部分水质指标,可以有效地应用于洪湖以及其它水域水质指标的预测和水质趋势的预警预报系统中。
简介:本文应用山仔水库2003~2006年叶绿素a浓度、总磷浓度、总氮浓度、水温、溶解氧浓度、高锰酸盐指数、pH值7个参数监测数据对人工神经网络模型进行训练,在此基础上应用1997—2002年除叶绿素a浓度外其他6个参数监测数据,推算出1997~2002年间缺失的叶绿素a浓度,并对1997—2006年春末夏初的叶绿素a浓度动态进行分析,结果表明:山仔水库1997年建库初期,叶绿素a浓度处于较高水平,2000年以后叶绿素a浓度开始降低,近几年基本保持稳定.2003—2006年叶绿素a浓度呈季节周期性变化,春末经夏季到初秋,叶绿素a浓度持续升高,冬季下降明显,春季又开始回升;说明近几年山仔水库水体春末夏季秋初处于富营养化水平,秋末冬季处于中营养水平.本研究结果将为山仔水库的富营养化防治提供科学依据.
简介:各省、自治区、直辖市自然资源主管部门、新闻出版主管部门,广东分署、各直属海关,“扫黄打非”办公室,各有关地图承印和进出口经营单位:近期,海关在查验进出口地图产品中发现,部分地图产品存在错绘我国国界线、漏绘我国重要岛屿等严重问题;在2017年全覆盖排査整治“问题地图”专项行动中,也发现部分单位进出口的地图产品未依法履行地图审核程序,相关地图产品存在严重问题为进一步规范和加强承接地图印刷业务的企业和地图进出口经营单位(以下简称地图承印和进出口经营单位)的地图管理工作,切实维护国家领土主权、安全和利益,现就有关事项通知如下.