简介:依据气温间的空间相关性,将地统计学中的普通克里金法(OrdinaryKriging,OK)引入地面气温资料的质量控制。考虑气温在空间上的连续性,提出一种基于高斯模型改进的普通克里金(ImprovedOrdinaryKriging,IOK)质量控制方法。为评估该方法的性能,运用IOK法对江苏省67个台站2008年地面日平均气温资料进行质量控制,并与OK法以及反距离加权法(InverseDistanceWeighted,IDW)进行比较。试验结果表明,IOK法的检验效果优于OK法与IDW法,且稳定性与适用性较高,能有效地标记出气温观测数据中的可疑数据。
简介:文章对呼和浩特市2015年冬季(2015年11月—2016年1月)空气质量指导预报从单时次预报、逐日预报、过程预报3个方面进行了检验分析。检验分析表明:(1)单时次(08时)PM2.5、PM10等要素浓度预报偏差在可接受范围内,其中PM2.5、PM10、CO、NO2、O3、SO2冬季平均绝对误差分别为52.99、68.21、1.25、17.89、26.93、23.76ug·m-3,且PM2.5与PM10误差变化趋势较为一致,其相关系数为0.91;单时次(08时)AQI预报准确率为72.94%。(2)逐日AQI检验误差65.41,AQI预报准确率为64%。(3)空气质量污染过程预报较为滞后,其中单峰型污染过程波峰预报时间滞后48~60h;双峰型污染过程中第一个波峰预报时间滞后60h左右,而第二个波峰滞后1d左右;持续性污染过程中波峰预报时间滞后约36h。
简介:利用2007--2010年南昌市空气污染监测资料以及气象观测资料,分析了空气质量与天气形势的关系,以及造成南昌市空气污染的主要天气形势特征。结果表明:(1)南昌市空气污染具有明显的季节性变化特征,冬季污染日出现频次最高,其次是春、秋两季,夏季由于雨水的冲刷稀释作用、热对流作用,极少出现空气污染日。(2)影响南昌市空气质量的地面形势主要分为低压类(倒槽、锋前)和高压类(高压底部、高压后部、弱高压),而高空系统主要为槽后西北气流以及西南气流的影响。(3)当出现空气污染时,地面至1000hPa近地层逆温非常明显,地面风速弱,基本在3m/s以下,且以偏东风出现频次最高。(4)污染物浓度与霾天气密切相关,霾日的空气质量较差。
简介:利用哈尔滨市2014—2016年逐日空气质量指数(AQI)数据,结合同期气象观测资料,分析了哈尔滨市空气质量的变化特征、主要污染物及与主要气象要素之间的关系。结果表明:近3a间,哈尔滨空气质量为良级别的天数最多,占47%,达到污染级别的天数占31%,2016年空气质量最佳,优良级别的天数达到284d,占全年78%;春夏季AQI指数较低,秋冬季AQI指数明显偏高,9月空气质量全年最佳,1月空气质量最差;PM2.5是造成哈尔滨空气污染的最主要污染物,其次是PM10、NO2和臭氧8h(O3-8h);AQI与气压之间以正相关为主,秋冬季最为显著;与风速主要表现为负相关,冬季尤为显著;与气温的关系受到采暖的干扰差异较大,年尺度及秋冬季呈负相关,月尺度呈正相关;与降水日数呈负相关;与相对湿度冬季表现为显著正相关,而5—9月为负相关。