简介:目的了解医学生自主学习的现状,为开展自主学习指导提供参考依据。方法采用《大学生自主学习调查问卷》对1305名医学生进行现况调查。结果有72.1%的医学生喜欢自己所学的专业;7.7%的医学生有经常逃课的经历,72.6%的学生偶尔逃课;43.3%的医学生认为学习成绩不能反映能力;当考试成绩不理想时,有78.7%的学生会自责;在专业学习中遇到困难时,93.7%会寻找各种方式解决问题;89.7%的学生对学习成绩要求优良和中等。有52.1%的医学生每天的学习时间是2~4h;学习地点集中在教室、宿舍和图书馆,66.9%的学生会制定学习计划;经常进行课前预习和课后复习的学生分别占6.0%和19.6%;经常到图书馆借书或查找资料的学生占14.7%。男女在部分学习态度与学习习惯上的构成差异有统计学意义(p〈0.05或p〈0.01)。结论医学生具有一定的自主学习能力,但在学习习惯方面还有待加强。可通过开展研究性学习和全方位的学习指导,提高医学生的自主学习能力。
简介:摘要:本文提出了一种基于机器学习的眼底图像检测方法、装置及系统,其中主要包括:获取待检测的眼底图像;对所述眼底图像整体区域进行第一特征集检测;对所述眼底图像中特定区域进行第二特征集检测,所述第一特征中的特征的显著度大于第二特征集中的特征的显著度;基于机器学习对检测的结论进行判定得到最终检测结果。每种类型的特征分开检测,互不影响,可以较为精确的判断每个特征的类别,同时进行多种类别多种显著度的特征的检测,可以高效精确的对眼底图像进行检测。
简介:摘要 目的:以《易经》象数为基础探索它的应用性。结果:认识到冉雪峰走出了开创性的第一步,生物遗传密码又有很好的证明,我们只有略微地补充。讨论:对象数的相互作用和相互转化进行粗略讨论。
简介:摘要:本文提出了一种基于机器学习的眼底图像检测方法、装置及系统,其中主要包括:获取待检测的眼底图像;对所述眼底图像整体区域进行第一特征集检测;对所述眼底图像中特定区域进行第二特征集检测,所述第一特征中的特征的显著度大于第二特征集中的特征的显著度;基于机器学习对检测的结论进行判定得到最终检测结果。每种类型的特征分开检测,互不影响,可以较为精确的判断每个特征的类别,同时进行多种类别多种显著度的特征的检测,可以高效精确的对眼底图像进行检测。
简介:摘要目的探讨基于MRI的深度学习(DL)影像组学机器学习模型在术前区分病理低级别和高级别软组织肉瘤(STS)的价值。方法回顾性纳入2007年11月至2019年5月青岛大学附属医院经病理证实的151例STS患者为训练集、山东第一医科大学附属山东省立医院和河北医科大学附属第三医院的131例STS患者为外部验证集。根据法国国家癌症研究中心(FNCLCC)肿瘤分级标准,STS病理分级低级别(FNCLCCⅠ和Ⅱ级)161例,高级别(FNCLCCⅢ级)121例。分别提取病灶的手工影像组学(HCR)特征和DL影像组学特征,分别基于HCR特征、DL特征和两者组合特征,建立决策树、逻辑回归、支持向量机(SVM)3种分类器的机器学习模型,采用受试者操作特征曲线下面积(AUC)评价各机器学习模型预测高级别和低级别STS的效能,确定最优机器学习模型。采用单因素和多因素logistic回归筛选临床和影像学特征,建立临床影像学模型。结合最优机器学习模型和临床影像学模型,建立列线图,采用AUC来评估各模型和列线图的预测性能,AUC间比较采用DeLong检验。采用Kaplan-Meier生存曲线和log-rank检验评价最优机器学习模型在STS患者无进展生存期(PFS)风险分层中的表现。结果基于HCR和DL组合影像组学特征的SVM机器学习模型的AUC最大,在训练集和外部验证集中预测STS分级分别为0.931(95%CI 0.889~0.973)和0.951(95%CI 0.904~0.997),为最优机器学习模型。临床影像学模型在训练集和外部验证集中的AUC分别为0.795(95%CI 0.724~0.867)和0.615(95%CI 0.510~0.720),列线图分别为0.875(95%CI 0.818~0.932)和0.786(95%CI 0.701~0.872)。外部验证集中,最优影像组学机器学习模型预测STS分级的性能优于列线图和临床影像学模型(Z=3.16、6.07,P=0.002、<0.001)。最优影像组学机器学习模型预测的高级别和低级别STS患者的PFS差异有统计学意义(训练集χ²=43.50,P<0.001;外部验证集χ²=70.50,P<0.001)。结论基于MRI的DL影像组学模型可有效预测STS的FNCLCC肿瘤分级,其中HCR和DL组合影像组学特征的SVM分类器模型效能最佳,并有望对患者预后进行风险分层。