简介:目的:针对预张力索杆体系,将构件刚度与体系判定相结合,提出分布式静不定和分布式动不定的计算方法,使体系分析从“系统”层面向“构件”层面延伸。创新点:1.推导出具有广泛适应性的分布式静不定公式,并证明与原有方法的内在关系。2.首次提出分布式动不定数学公式。3.给出分布式不定数的物理意义及潜在的应用。方法:该方法在平衡矩阵理论基础上,采用奇异值分解法分别求解相互正交的两类单元变形量和两类节点外荷载模态;在排除整体刚体位移模态后,利用该正交性,求解分布式静不定和动不定。结论:1.该方法能克服已有方法中的奇异性问题,具有普遍性,可适用于动定及动不定结构。2.作为结构双对称性的代表,分布式静不定数可被用作一个简单而有效的分组准则;该准则能提高二次奇异值找力法(DSVD)的效率并能为设计师提供更多的初始预应力设计可能性。3.揭示分布式静不定与结构重要性及结构敏感性间的关系。4.分布式动不定数可被用作节点可动性的一个基本指标。
简介:对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面-向径容积规则的容积卡尔曼滤波(CKF)相结合的强跟踪-容积卡尔曼滤波(STCKF)。通过将强跟踪算法中的自适应渐消因子引入到滤波时间更新和测量更新方程中,在线实时调整滤波增益矩阵,能有效避免模型失准造成的滤波性能下降,使该算法兼具CKF滤波精度高和STF鲁棒性强的优点。通过数学仿真表明,改进后的STCKF可以实现对具有机动的弹道式再入目标的高精度跟踪,相对于CKF精度提高50%,并且具有更强的鲁棒性和自适应能力。
简介:2015年8月10日至14日,第八届国际工业与应用数学大会(2015InternationalCongressonIndustrialandAppliedMathematics,ICIAM2015)在北京国家会议中心举办。四年一届的国际工业与应用数学大会(ICIAM)会议议程包括:颁奖典礼、邀请报告、公众报告、小型研讨会、工业小型研讨会、论文报告、展板报告、卫星会议等,旨在为活跃在应用数学领域的研究工作者提供切磋、提高和合作的机会。ICIAM2015由中国工业与应用数学学会主办,联合中国数学学会、中国运筹学会、中国计算数学学会、中国现场统计研究会、中国系统工