学科分类
/ 1
12 个结果
  • 简介:朋友电脑里出现了一个奇怪的目录,无法打开,也无法删除,甚至在DOS下也找不到删除的方法!在无计可施的情况下,朋友邀请笔者帮忙处理。经过分析笔者发现这是恶意侵入者利用系统漏洞为木马制造的一个安全真空地带。现笔者将此详情写出来与大家共享.希望大家在遇到类似攻击的时候不会手足无措。

  • 标签: Windows 操作系统 注册表编辑器 资源管理器 文件夹 木马文件
  • 简介:SCs移植入SCI部位促进轴突再生和功能恢复具体机制如下,促进SCI后神经元的功能恢复以及神经轴突的再生,  细胞移植可以通过改变SCI后的病理过程从而促进脊髓功能恢复

  • 标签: 修复脊髓 损伤进展 移植修复
  • 简介:结构振动测试和损伤诊断中,较易得到结构的低阶模态信息,但低阶模态信息主要反映结构的整体性能,对结构局部损伤不敏感.本文主要研究框架结构高阶模态特性,并通过高阶模态米反映结构的局部特征,实现框架结构损伤诊断.研究中采用理论模态分析和实验模态分析相结合的方法.理论模态分析表明框架结构存在模态密集区且高阶模态具有局部特征.采用局部激振方法对一个钢筋混凝土框架结构模型施加激励,通过实验模态分析获取高阶局部模态信息.结果表明最大能量高阶模态可以识别框架柱的刚度变化.

  • 标签: 模态分析 高阶模态 局部模态 参数识别 框架结构
  • 简介:结构损伤前后动力特性的变化来快速、直接、方便地判定损伤的存在、程度及位置.本文采用曲率模态对刚架结构的损伤检测进行了研究.首先用有限元法计算出结构的位移模态振型,然后用差分法计算出曲率模态振型.数值模拟结果表明:曲率模态振型对结构的损伤敏感,可同时确定结构损伤的存在、程度和位置,并且可以用于结构多位置损伤的检测.实验结果证实了数值模拟结论.

  • 标签: 模态振型 结构损伤检测 差分法计算 动力特性 有限元法 刚架结构
  • 简介:提出了一种基于频响函数扩展的模型修正方法,利用该方法对IASC-ASCESHMBenchmark结构进行了损伤识别.结果表明,该方法能够有效消除模态分析误差,保证修正过程中矩阵物理意义明确,降低测量噪声对修正的影响.在模型误差、测量噪声以及质量刚度分布不确定等因素的影响下,该方法共有较高的损伤识别精度.

  • 标签: 损伤识别 模型修正 扩展 频响函数
  • 简介:非线性输出频率响应函数是由Volterra级数发展而来的频域概念,可方便在频域对非线性系统进行分析,它是频率的一维函数.本文主要介绍了利用NARMAX模型以及NOFRF对结构进行损伤检测的方法,并利用实验研究证实了该损伤检测方法的可行性.另外,由于系统非线性特性可用来做结构损伤检测,且具有对系统状态比较敏感的优点,而基于NOFRF的损伤检测方法是利用非线性方法来分析系统的状态,该方法提取出的特征属于非线性特征,所以该损伤检测方法可以用来做结构损伤检测,且具有对系统状态比较敏感的优点.

  • 标签: VOLTERRA级数 NARMAX模型 非线性输出频率响应函数 广义频率响应函数 损伤检测
  • 简介:提出一种以广义柔度矩阵为损伤指标,基于量子粒子群优化算法的结构损伤识别方法.该方法根据结构损伤前后广义柔度矩阵差与结构物理参数变化关系,将结构广义柔度矩阵识别问题转化为优化问题,进而采用系统辨识能力较强的量子粒子群优化算法搜索目标函数最优值,从而达到损伤位置和损伤程度同时识别的双重效果.最后通过简支梁数值模拟对该方法的有效性进行了验证.

  • 标签: 量子粒子群优化算法 广义柔度矩阵 结构损伤识别 损伤位置 损伤程度
  • 简介:可见神经干细胞移植组的脊髓损伤附近有大量被Brdu标记的移植细胞,结果发现接受神经干细胞移植的大鼠脊髓功能恢复明显优于损伤组,说明神经干细胞移植治疗可以显著促进损伤脊髓的功能恢复

  • 标签: 实验研究 干细胞静脉 损伤实验
  • 简介:结构损伤识别 分治法 变治法 装袋学习算法 神经网络,结果显示归纳学习方法特别是装袋学习方法在噪声程度超过50%时明显好于神经网络方法,用于将P的子问题P1

  • 标签: 中的比较 学习方法 归纳学习
  • 简介:基于损伤粘弹性材料的一种卷积型本构关系和大挠度薄板的yonKdrman假设,给出了损伤粘弹性薄板准静态问题的数学模型,其控制方程为一组非线性积分-偏微分型方程.采用Galerkin截断技术,将原积分-偏微分系统化为积分系统.然后采用四阶的Runge-Kutta法在数值上得到了损伤粘弹性薄板的准静态问题的解.

  • 标签: 损伤粘弹性薄板 von Karman假设 GALERKIN方法 准静态问题 积分-偏微分方程
  • 简介:从考虑损伤的粘弹性材料的一种卷积型本构关系出发,建立了在有限变形下损伤粘弹性Timoshenko梁的控制方程.利用Galerkin方法对该组方程进行简化,得到一组非线性积分-常微分方程.然后应用非线性动力学数值分析方法,如相平面图,Poincare截面分析了载荷参数对非线性损伤粘弹性Timoshenko梁动力学性能的影响.特别考察了损伤对粘弹性梁的动力学行为的影响.

  • 标签: 损伤粘弹性固体 Timosenko梁 几何非线性 混沌 非线性动力学
  • 简介:根据Timoshenko几何变形假设和Boltzmann叠加原理,推导出控制损伤粘弹性Timoshenko中厚板的非线性动力方程以及简化的Galerkin截断方程组;然后利用非线性动力系统中的数值方法求解了简化方程组.通过分析可知,板在谐载荷的作用下,具有非常丰富的动力学特性.同时研究了板的几何参数、材料参数及载荷参数对损伤粘弹性中厚板动力学行为的影响.

  • 标签: 损伤粘弹性固体 中厚板 几何非线性 非线性动力系统 分义 混沌