简介:在Goodwin与Puu的宏观经济思想基础上,得到了一个推广的非线性动力学经济周期系统.首先用数值方法研究了此系统在特定参数条件下的全局分岔行为.然后结合最大Lyapunov指数,详细讨论了系统在分岔过程中动力学特征的转变.通过分析分岔图形发现在某些参数区间内倍周期分岔导致了混沌;在混沌区域内嵌有多个周期窗口;"加速数"值的增加可以促进经济的周期性运动.最后介绍了分岔和混沌分析得到的动力学性质对理解经济波动的应用.
简介:PER和TIM是果蝇两个重要的生物钟蛋白.以往的研究一直认为PER和TIM是在细胞质中结合为二聚体并以二聚体的形式进入细胞核.但2006年PabloMeyer等人的实验研究表明,PER/TIM复合物在细胞质中分离,然后PER和TIM在很短的时间内独立进入细胞核.根据该项实验结果,我们对果蝇昼夜节律调控模型进行了修正,修正模型反映了per和tim基因的转录翻译及蛋白质的翻译后修饰过程,二次磷酸化的蛋白质PER(P2)、TIM(他)分别独立进入细胞核并参与后续的调控过程.计算了修正模型的振荡周期并由此确定了新模型所引入的参数值.对修正模型的振荡节律进行数值分析,发现修正模型振荡节律在DD、LD条件下均产生了近于24h的持续周期振荡而在LL条件下呈现出振荡衰减,这些结果与原模型相似,反映出所建模型的合理性.但修正模型对参数对称性的依赖性则更加强烈,具体解释还有待于进一步的工作.
简介:提出了一个新的四维自治类新混沌系统.首先在整数阶下分析了该系统的基本动力学特性.并利用数值仿真、功率谱分析了当参数固定时,分数阶新混沌系统随微分算子阶数变化时的动力学特性.研究表明:当微分算子阶数为0.85时,分数阶新系统随参数变化经短暂混沌和边界转折点分叉而进入混沌.针对一类结构部分未知分数阶混沌系统,基于Chebyshev正交函数神经网络,稳定性理论[14]和分数阶PI滑模面构造方法设计了一种新型的含有补偿器的自适应非线性观测器,实现了分数阶新混沌系统的投影同步.数值仿真验证了设计方法的有效性.
简介:研究了最新提出的超混沌吕系统的最优同步问题.利用哈密顿-雅可比-贝尔曼方程,对具有不确定参数的超混沌吕系统设计了最优同步的方案,分别得到了无限时间区间和有限时间区间上的最优控制器和参数控制律.数值仿真验证了理论分析的正确性.
简介:根据三维混沌系统Lorenz吸引子和Chen’s吸引子线性部分的系数特征,构造了一个三维非线性动力系统,并研究了其混沌动力学特征,包括相轨迹图、最大Lyapunov指数、Lyapunov指数谱和Poincare映射,这些特征都表明,该系统具有混沌吸引子。
简介:基于经典的Magnus级数方法提出了一个简单有效的四阶近似积分格式,用于求解一般非线性动力学系统.它是一种几何积分方法,能保持精确解的许多定性性质,并且该方法只包含二个或三个指数矩阵的乘积,避免了通常的Magnus级数方法涉及的复杂的交换子运算.数值算例显示该方法是有效的。
简介:研究了一类参数激励和外激励联合作用下四边简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出四边简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确性.
简介:一个可调节速度的皮带驱动的干摩擦振子系统,设其干摩擦力大小是常值且两个激励频率是谐调的,本文对这个简单的力学模型进行了研究,分析了Filippov系统中可能出现的四种余维-1sliding分岔并给出数值模拟.分析表明:该系统具有极其丰富的sliding分叉现象,较小的激励频率易引起非光滑分岔现象.
简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.