学科分类
/ 7
126 个结果
  • 简介:<正>以0,1为元素所构成的n阶方阵A=(aij)n×n,i,j=0,1,2,…n-1,其元素之间的加法与乘法运算按下列方式:则称A为布尔矩阵,文[1],[2]对这类矩阵的性质作了深入的研究和全面的介绍,文[4][5]给出了经典循环矩阵可约性和本原性的条件,本文给出了另一类循环布尔矩阵的可约性和本原性的充分必要条件。设g是一个非负整数,一个n阶g-循环矩阵A=(aij)n×n是一个这样的矩阵,除

  • 标签: 布尔矩阵 可约性 本原性 循环矩阵 乘法运算 充分必要条件
  • 简介:考虑线性模型Y=Xβ+ε,Y是可观察的n维向量,ε和β是不可观察的n维和p维随机向量;E(β)=Aα,VAR(β)=σ2△≥0;E(ε)=0,VAR(ε)=σ2V≥0;E(εβ')=0;X,A,△,V皆为已知矩阵;α∈Rk,σ>0皆为未知参数,本文首次提出矩阵损失函数,并给出了(Sα,Qβ)的估计(L1Y+α,L2Y+b)在非齐次估计类中可容许的充要条件。

  • 标签: 随机回归系数 可容许性 非齐次 矩阵损失函数 充要条件 可容许估计
  • 简介:本文讨论形如AnX—ACnX的方程,其中An是一个对称三对角矩阵,Cn是一个对角矩阵.对矩阵An进行3×3分块,给定An的一个非顺序主子阵Ar+1,r+s,给定Cn和四个向量X1=(x1,…,xr),X3=(xr+s+1,…+,xn)Y1=(y1,…,y1),Y3=(yr+s+1,…,yn)'和两个不同实数A,P,构造一个对称三对角矩阵A。和两个向量X2=(Xr+1,…,Xr+x)',Y2=(yr+1,…,yr+s)’,满足AnX=λCnX和AnY=μCnY,其中X=(X1,X2,X3,Y=(Y1,Y2,Y3)本文给出问题有解的条件,解的表达式和相应算法,并给出数值算例验证算法的有效性.

  • 标签: 对称三对角矩阵对角矩阵 广义特征值反问题 非顺序主子阵 缺损广义特征对
  • 简介:研究图的邻接矩阵的行列式主要是为了研究图的零特征值的重数,而零特征值的重数在化学分子结构图的稳定性问题中有广泛的应用.本文给出了单圈图及无交双圈图的邻接矩阵的行列式分类.

  • 标签: 单圈图 无交双圈图 完美匹配 邻接矩阵 行列式