简介:心理学研究发现“思维的起点是意识到问题的存在.一个人的思维活动如果没有问题的存在,往往是被动的、肤浅的思维.”21世纪需要的是具有开创精神的创新型人才.创新型人才不是与生俱来的,需要后天的培养,而问题意识的形成是创新能力培养的前提.在新课程理念下,数学在高考中举足轻重,并对其他学科有着推动作用.因此高中数学教学中对学生问题意识的培养就显得尤为重要了.但在数学教学中,我们更多的是关注数学问题的解决,对引导学生发现问题,提出问题还没能做到足够的重视和关注.所以我们要充分利用课堂这一“主战场”,让问题走进课堂,培养学生问题意识,让质疑成为学生学习的习惯。
简介:本文综述了随机矩阵领域的某些国内外最新前沿课题与进展,以及它们对应的主要研究方法和手段。作者还列出了此领域某些有待解决的问题。
简介:第1课 一元二次方程(精讲式)一、问题提出1.如果一个正方形的面积为64cm2,正方形的边长为xcm,则x2=64,x>0 ①2.已知一个矩形的长比宽多2cm,宽为xcm,矩形的面积为45cm2,问矩形的宽是多少?依题意得:(x+2)x=45 (x>0)整理得:x2+2x-45=0 ②3.在△ABC中∠C=90°,AB=16cm,BC-AC=2cm,求AC的长.若设AC=xcm则由勾股定理AC2+BC2=AB2,即x2+(x+2)2=162整理得:x2+2x-126=0 ③4.某片树林现估计木材储量为a立方米,若每年增长的百分率相同,两年后这片树林木材储量为m立方米,每年平均生长率为x,则得:
简介:第一课 正弦和余弦(一)一、启发提问1.如图6-1,在△ABC中,∠C=90°.(1)如果∠A=30°,则ac=,bc=.(2)如果c=2a,则∠A=,∠B=.图6-1 图6-2 2.如图6-2,在△ABC中,∠C=90°.(1)如果∠A=45°,则ac=,bc=.(2)如果a=b,则∠A=,∠B=.3.在Rt△ABC和Rt△A′B′C′中:∠C=∠C′=90°.(1)如果∠A=∠A′,那么:BCAB=B′C′A′B′成立吗?(2)如果BCAB=B′C′A′B′,那么:∠A=∠A′吗?从上面的问题中我们不难看出在直角三角形中:如果某一个锐角的度数一定,则相应的直角边与斜边的比值也