简介:用K—Carleson测度刻画了B^α(B0^α)到QK的复合算子的有界性,以及B^α到QK,0的复合算子的有界性和紧性.
简介:术文讨论了加权Bergman空间到Zygmund空间(小Zygmund空间)的广义复合算子Cφ^h的有界性和紧性特征,得到了以下约结果:(1)Cφ^h是加权Rergman空间到Zygmund空间的有界算子和紧算子的充要条件;(2)Cφ^h是加权Bergman空间到小Zygmund空间的有界算子和紧算子的充要条件.
简介:讨论了单位圆盘中p-Bloch空间到小q-Bloch空间的加权复合算子TФ,φ的有界性和紧性.主要得到以下结论:(i)TФ,φ是p-Bloch空间到小q-Bloch空间有界算子的充要条件;(ii)TФ,φ是p-Bloch空间到小q-Bloch空间紧算子的充要条件,同时也给出了几个推论.
简介:本文证明第二种服务可选的M/M/1排队模型的主算子的点谱包含一个区间(-α,0),α〉0.此结果表明该主算子生成的C_0-半群不是紧算子,甚至不是最终紧算子.本文的结果与我们以前的结果合并后得到:(i)该C_0-半群的本质增长界为0.从而,该C_0-半群不是拟紧算子.(ii)该模型的时间依赖解不可能指数收敛于其稳态解.(iii)该C_0-半群的本质谱半径等于1.