简介:将求解线性方程组的异步并行多分裂松弛迭代算法推广到线性互补问题.当问题的系数矩阵为H-矩阵类时,证明了算法的全局收敛性.
简介:改进了奇异M-矩阵的线性方程组的并行多分裂法的一些最近结果,给出了并行多分裂迭代方法的一些收敛性的理论结果.
简介:主要研究微生物发酵过程中不同工况下的非线性、非光滑且无法求得解析解的动力系统及其主要性质,建立了具有数百个不同动力系统为主要约束、有连续与离散两种辨识参量、依据实验数据与生物系统鲁棒性为性能指标的辨识模型,阐述了此类辨识模型与最优控制模型的建立方法、数值模拟方法及并行优化计算方法,并介绍了笔者的著作《非线性发酵动力系统——辨识、控制与并行优化》的基本内容。
简介:在锥序Banach空间中引入了集值映射ε-严有效意义下的广义梯度.在连通性条件下,利用凸集分离定理证明了该广义梯度的存在性.作为应用,给出了用广义梯度刻画集值优化问题ε-严有效解的充分和必要条件.
简介:讨论了集值优化问题严有效解的高阶导数型标量化定理.首先得到了集值优化问题严有效解的一个高阶导数型必要性条件,其次获得了集值优化问题严有效解的标量化必要性条件和充分性条件.
简介:在赋范线性空间中借助切导数研究集值优化问题的严有效性.当目标函数和约束函数相对于同一向量函数为拟不变凸时,利用凸集分离定理给出了集值优化问题取得严有效元的Kuhn—Xhcker型最优陛必要条件.利用切导数的性质,用构造性方法得到了拟不变凸集值优化问题取得严有效元的充分条件.
线性互补问题的异步并行多分裂松弛迭代算法
奇异线性方程组的并行多分裂迭代法
微生物发酵非线性系统辨识、控制及并行优化研究
广义梯度和ε-严有效解的最优性条件
集值优化问题严有效解的高阶标量化定理
拟不变凸集值优化问题严有效解的最优性条件