简介:本文致力于研究非线性中立型延迟积分微分方程隐式Euler方法的收缩性。本文中的Lipschitz数是关于变量t的函数,而不是常数,最终能得到其数值解的结果是收缩的。
简介:针对"FBAR(薄膜体声波谐振器)-梁"结构悬臂梁厚度不足、"嵌入式FBAR"结构微加工工艺复杂的缺点,提出了新型"膜片上FBAR(FBAR-on-diaphragm)"结构的微加速度计。其弹性膜片由氧化硅/氮化硅复合薄膜构成,既便于实现与硅微检测质量和FBAR的IC兼容集成加工,也利于改善微加速度计的灵敏度和温度稳定性。对由氧化硅/氮化硅双层复合膜片-硅检测质量惯性力敏结构和氮化铝FBAR检测元件集成的膜片上FBAR型微加速度计进行了初步的性能分析,验证了该结构的可行性。通过有限元模态分析和静力学仿真得出惯性加速度作用下膜片上FBAR结构的固有频率和弹性膜片上的应力分布;选取计算所得的最大应力作为FBAR中压电薄膜的应力载荷,结合依据第一性原理计算得到的纤锌矿氮化铝的弹性系数-应力关系,粗略估计了惯性加速度作用下氮化铝薄膜弹性系数的最大变化量;采用射频仿真软件,通过改变惯性加速度作用下弹性常数所对应的纵波声速,对比空载和不同惯性加速度作用下加速度计的谐振频率,得到加速度计的频率偏移特性和灵敏度。进一步分析仿真结果还发现:氧化硅/氮化硅膜片的一阶固有频率与高阶频率相隔较远,交叉耦合小;惯性加速度作用下,谐振频率向高频偏移,灵敏度约为数kHz/g,其加速度-谐振频率偏移特性曲线具有良好的线性。
简介:首先建立了第二类Chebyshev多项式Un(x)的Landau's型不等式.利用Un(x)的正交性,建立了代数多项式pn(x)的加权Landau's型不等式,并且指出其不等式的系数在某种意义上是最好可能的.
简介:本文利用Hardy-Littlewood极大函数、光滑模和K-泛函之间的等价关系、N函数的凸性、算子矩量估计及Jensen不等式等工具,研究了由陈文忠定义的LupasBaskakov型算子在Orlicz空间内的逼近性质,给出并证明了该算子在Orlicz空间内逼近的强型逆定理.由于Orlicz空间比连续函数空间和L_p空间涵盖更广泛,其拓扑结构也比L_p空间复杂得多,所以本文的结果具有一定的拓展意义.