简介:存在监控冲突的天基中段预警传感器调度优化是一个动态、高维、复杂多约束的非线性优化问题,其解空间的高维度与状态复杂性直接制约了智能优化算法的运用。本文以任务分解与任务复合优先权计算为基础,通过二级分离机制将解空间维度与状态复杂性降低至适于连续蚁群(continuousant-colonyoptimization,CACO)处理的全局优化形态,构建出相应的优化子路径集.在此基础上,针对监控冲突导致的状态变化特性,从局部搜索递进与募集的角度提出适于传感器调度优化的MG-DCACO(doubledirectioncontinuousant-colonyoptimizationbasedmassrecruitmentandgrouprecruitment)算法,成功将智能优化算法应用于基于低轨星座的天基中段预警中.最后对算法的收敛性进行论证,并通过与已有规则调度算法的对比得出MG-DCACO算法可获得优于规则调度算法的全局最优解。
简介:针对传统天文导航方法和GNSS导航方法应用于中高轨道航天器尤其是大椭圆轨道机动航天器自主导航的缺陷,提出一种基于低轨道天基平台实时跟踪观测的轨道机动航天器在轨绝对导航方法。其具体实施过程为布置于低轨道的天基平台利用其自带观测敏感器对轨道机动航天器进行全程实时跟踪测量,并将测量所得的星光角距信息和测距信息发送至轨道机动航天器,航天器根据接收得的量测信息结合自身状态预估信息通过最优滤波估计算法实现导航解算。仿真结果表明该方案具备较强的可行性,且该导航系统具有较高的导航估计精度,能够弥补传统天文导航和GNSS导航方法的不足之处,当天基平台自主定轨精度为80m时轨道机动航天器导航位置估计误差在120m以内。