学科分类
/ 2
35 个结果
  • 简介:在JohnSehmitt和PhilipHolmes工作基础上建立一个考虑阻尼效应的昆虫LLS(lateralleg-spring)模型,并在MATLAB环境下对其步态运动进行计算机数值模拟,对昆虫在水平面爬行步态进行分析,发现考虑阻尼的模型更符合实际情况,并表现出更好的稳定性,证明了由力学和几何定理主导的控制行为在维持昆虫爬行的稳定性方面起到了十分重要的作用,从而减轻了神经系统的负担,同时也说明了引人阻尼在提高运动稳定性方面发挥的作用.

  • 标签: 运动认知 控制规则 LLS模型 爬行步态 几何力学 预反射
  • 简介:基于转子动力学、Hertz理论和非线性动力学理论,针对一端支座松动的滚动轴承-转子系统的运动特征,考虑了松动间隙的非线性情况,建立了系统的动力学方程.在对转子系统动力学方程进行数值积分之后,通过分叉图、庞加莱图、相图和关联维数等显示了转子系统随转速变化和松动间隙的扩展会出现复杂动力学现象,并且研究了滚动轴承-转子系统在支承松动时的分岔和混沌运动及其变化规律,得出了有工程价值的结论,这些结论可为该类故障的诊断提供参考.

  • 标签: 支座松动 混沌运动 故障诊断 动力学 滚动轴承-转子系统
  • 简介:针对俯仰运动贮箱中液体的晃动用变分原理建立了一类新的Lagrange函数,以此为基础可以解析方式来研究俯仰运动贮箱中液体的非线性晃动.首先将速度势函数φ在自由液面处作波高函数η的Taylor级数展开,从而导出自由液面运动学和动力学边界条件非线性方程组;然后用谐波平衡法(HBM)假设其解为各次主导谐波叠加的形式,并代入方程组中得到含有未知系数相应多个代数方程式;最后用Broyden法对代数方程组求解.以无挡板开口二维、刚性矩形贮箱为例,研究了液体的大幅晃动,就液体晃动的幅值而言,在一定激励频率范围内,理论计算值与试验结果吻合较好,同时液面波高出现明显的零点漂移现象.

  • 标签: 矩形贮箱 非线性晃动 谐波平衡法 LAGRANGE函数 动力学模型 晃动控制方程
  • 简介:研究作大范围运动弹塑性平面板的动力学特性.考虑了几何非线性和材料非线性,基于平面应力假设、Mises屈服条件和流动法则,采用绝对节点坐标法,用虚功原理建立了作大范围运动弹塑性平面板的动力学方程.在数值计算时将各时刻的塑性应变储存在全局数组中,实现了塑性应变的迭代计算.通过对带集中质量、作大范围运动平面板的数值仿真研究塑性效应对系统的动力学特性的影响.

  • 标签: 作大范围运动 弹塑性平面板 几何非线性 材料非线性
  • 简介:首先建立了柔性悬臂梁非线性非平面运动的偏微分方程;然后运用Galerkin和多尺度方法得到平均方程,并利用规范形理论进一步将方程化简;最后用能量相位法求出多脉冲跳跃的能量函数序列.Dynamics软件数值计算表明:在系统中确实存在着由多脉冲跳跃而导致的Smale马蹄型混沌.

  • 标签: 非线性动力系统 混沌动力学 柔性悬臂梁 多脉冲轨道分析
  • 简介:为揭示弹箭在高空飞行过程中由于重力持续作用产生大攻角的物理本质,建立了弹道平面内时变参数的弹体运动数学模型,并推导了弹体在高空飞行段的攻角响应方程.同时,为了分析弹道顶点附近锥形运动的稳定性,综合考虑弹体姿态运动和位移运动建立了旋转弹锥形运动的动力学模型.针对大攻角引起显著气动非线性效应的情况,采用李雅普诺夫一级近似方法,给出了弹道顶点附近弹体锥形运动的稳定判据,并通过数值仿真验证了其正确性.

  • 标签: 旋转弹 锥形运动 复攻角 气动非线性 李雅普诺夫方法
  • 简介:考虑环境阻尼因素的影响,研究了具有运动约束作用Kelvin-Voigt型输流曲管的混沌运动现象.数值仿真表明,输流曲管系统在某些参数取值时具有混沌运动的可能,管道材料的粘弹性系数和环境阻尼等因素对曲管的动力响应产生较大的影响.这些结论可为工程管道系统的铺设与设计提供参考.

  • 标签: 混沌运动 阻尼作用 环境 t型 数值仿真 约束作用
  • 简介:研究了在地基波动影响下非线性粘弹性桩中的混沌运动.假定桩体材料满足Leaderman非线性粘弹性本构关系,得到在轴向载荷作用下满足Winkler条件的地基土波动方程、桩与地基土耦合振动方程;利用Galerkin方法将非线性积分-微分方程简化,并进行了数值计算,揭示了非线性粘弹性桩包括混沌运动在内的动力学行为.

  • 标签: 粘弹性桩 波动影响 运动分析 非线性粘弹性本构关系 GALERKIN方法 WINKLER
  • 简介:探讨了摆的非线性振动方程的新解法.由此方程和初始条件着手,可推导出一系列派生性质,它们包括:最大位移,最大速度,初始加速度和相平面上的相轨线.把近似运动表成Fourier级数的形式,其中圆周频率也是待定的.令近似运动满足这些派生性质,便可以定出待定的Fourier系数和圆周频率.文中提出了4参数法和5参数法,即:4个或5个待定的Fourier系数和圆周频率.分析计算表明,4参数法己有较高的精度,5参数法的结果己和精确解相差甚微.

  • 标签: 非线性振动方程 性质 派生 FOURIER级数 参数法 初始条件
  • 简介:采用弹性理论建立了功能梯度材料板的静力平衡方程,利用静力平衡方程确定了功能梯度材料板的中性面位置,在此基础上推导出了功能梯度材料板在均匀温度场中的非线性振动及屈曲微分方程组,求得了功能梯度材料圆板的非线性振动及屈曲的近似解,讨论分析了中性面位置、梯度指数、温度等因素对功能梯度材料圆板非线性振动及屈曲的影响.把该方法计算结果与有限元计算结果进行了比较,验证了该方法的计算结果是可靠的.算例分析表明,中性面位置对均匀温度场中功能梯度材料圆板的非线性振动及屈曲有一定影响.

  • 标签: 功能梯度 材料 非线性 振动 屈曲 温度
  • 简介:采用弹性理论建立了功能梯度材料板的静力平衡方程,利用静力平衡方程确定了功能梯度材料板的中性面位置,在此基础上推导出了功能梯度材料板在均匀温度场中的非线性振动及屈曲微分方程组,求得了功能梯度材料椭圆板的非线性振动及屈曲的近似解,讨论分析了中性面位置、梯度指数、温度等因素对功能梯度材料椭圆板非线性振动及屈曲的影响.把该方法计算结果与有限元计算结果进行了比较,验证了该方法的计算结果是可靠的.算例分析表明,中性面位置对均匀温度场中功能梯度材料椭圆板的非线性振动及屈曲有一定影响.

  • 标签: 功能梯度 材料 椭圆板 非线性 振动 屈曲
  • 简介:研究了变速轴向运动黏弹性梁参激振动受拉力扰动时在主参数共振和组合参数共振范围内的稳定性.轴向运动梁的黏弹性本构关系引入了物质时间导数.当参激频率接近某一阶固有频率2倍时将发生主参数共振;当参激频率接近某两阶固有频率之和时将发生组合参数共振.运用多尺度法,直接求解轴向运动梁的控制方程,导出了稳定性边界方程.最后,通过数值算例给出了变速轴向运动梁的黏阻尼和干扰拉力对失稳区域的影响结果.

  • 标签: 轴向变速梁 黏弹性 拉力扰动 参数共振 稳定性
  • 简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:研究了作大范围旋转运动高度和宽度均沿着梁长度方向变化的锥形悬臂梁动力学问题.采用Bezier插值方法对柔性梁的变形场进行描述,考虑柔性梁的纵向拉伸变形和横向弯曲变形,计人由于横向弯曲变形引起的纵向缩短,即非线性耦合项.运用第二类拉格朗日方程推导出作旋转运动锥形梁的动力学方程,并编制了动力学仿真软件,对作旋转运动锥形梁的频率和动力学响应进行研究.结果表明:不同锥形梁截面的动力学响应和系统频率将有明显差异,因此对实际系统合理建模,将能得到更为精确的结果.

  • 标签: 锥形梁 Bezier插值方法 锥度比 固有频率
  • 简介:采用Hodgkin-Huxley神经元模型,在二维随机神经网络中引入局部扩散功能缺陷,研究了神经网络中非对称缺陷附近的方形失去扩散功能的缺陷对螺旋波动力学行为的影响.缺陷使螺旋波降低传播速度的行为与缺陷的位置和尺寸有关:靠近螺旋波中心的缺陷影响最为显著,当缺陷远离中心位置时,缺陷的作用明显减弱;缺陷尺寸越大,影响也越显著.同时观察到,在弱耦合神经网络中,缺陷的存在导致了螺旋波的漂移现象.进一步研究缺陷和通道噪声同时存在时系统时空斑图的演化行为,结果发现,噪声作用下缺陷处形成了新的波源.最后,通过分析神经元放电节律和平均膜电位的变化揭示了缺陷对神经网络时空行为影响的机理.

  • 标签: 神经元网络 缺陷 通道噪声 时空斑图