简介:车道线检测是智能驾驶系统的重要组成部分,它提供了车辆与车道位置关系的信息.针对智能车辆驾驶系统在视觉导航过程中车道线检测的精确性和鲁棒性的问题,提出一种有效的车道线检测方法.首先对原始RGB图像分别进行感兴趣区域设定、逆透视变换、灰度化和阈值处理;然后进行霍夫变换处理,利用斜率和中心点位置筛选检测结果;最后利用卡尔曼滤波对检测到的线段进行跟踪,预测当前车道线位置.实验结果表明,该算法能够有效解决图像中车道线不清晰以及一些干扰遮挡的问题,车道线检测准确率可达94%,具有较好的准确性、鲁棒性和较低的计算复杂度,有利于实时性检测系统的构建.
简介:在FPGA进行硬件加速的基础上,采用10位的高速A/D转换器设计并实现了采样率5Gsps(Gigabitsamplespersecond)、带宽2GHz的宽带数字接收机的硬件实物原型.在所设计的硬件平台上,完成了FPGA硬件加速的FFT算法实现和超分辨率的信号检测算法实现,进而提高了接收机在接收多个信号时的瞬时动态范围(IDR).该设计较之前代在集成度、功耗、体积和动态性能等方面均有显著提升.经实验验证,在高达2GHz的频率范围内,接收机同时接收两个信号时,通过硬件加速的4096点FFT计算,其瞬时动态范围最大可达52dB.