学科分类
/ 1
11 个结果
  • 简介:设H是一实Hillber空间,K是H之一非空间凸子集,设(Ti)i=1^N是N个Lipschitz伪压缩映象使得F=∩i=1^NF(Ti)≠Ф,其中F(Ti)={x∈K:Tix=x}并且{αn}n=1∞,{βn}n=1^∞包含[O,1]是满足如下条件的实序列(i)∑n=1^∞(1-αn)^2=+∞;(ii)limn→∞(1-αn)=0;(iii)∑n=1^∞(1-βn)〈+∞;(iv)(1-αn)L^2〈1,arbitaryn≥1;(v)αn(1-βn)^2+αm[βn+L(1-βn)-]^2〈1,其中L≥1是{Ti}i=1^N的公共Lipschitz常数,对于x0∈K,设{xn}n=1^∞是由下列定义的复合隐格式迭代xN=αnxn-1+(1-αn)Tnyn,yn=βnxn+(1-βn)Tnxn,其中Tn=TnmodN,则(i)limn→∞||xn-p||存在,对于所有的p∈F;(ii)limn→∞d(xn,F)存在,其中d(xn,F)=infp∈F||xn-p||;(iii)limn→∞inf||xn-Tnxn||=0.本文的结果推广并且改进H—K.Xu和R.G.Ori在2001年的结果和Osilike在2004年的结果,并且在这篇文章中,主要的证明方法也不同与H—K.Xu和Osilike的方法.

  • 标签: 伪压缩映射 复合隐格式迭代 公共不动点
  • 简介:本文给出了数值求解一类偏积分微分方程的二阶全离散差分格式.采用了Crank-Nicolson格式;积分项的离散利用了Lubieh的二阶卷积积分公式;给出了稳定性的证明,误差估计及收敛性的结果.

  • 标签: 二阶 积分微分方程 全离散 阶差 收敛性 误差估计
  • 简介:利用连续有限元法得到了二维线性哈密尔顿系统一次元和二次元的计算格式,并证明了它们都是辛格式.系统的内在特征在离散后能保持.本文的数值例子也证实了这些结论.

  • 标签: 哈密尔顿系统 有限元法 辛格式 线性 二维 计算格式
  • 简介:利用特征投影分解(POD)方法建立二维双曲型方程的一种基于POD方法的含有很少自由度但具有足够高精度的降阶宦限差分外推迭代格式。给出其基于POD降阶有限差分解的误差估计及基于POD降阶有限差分外推迭代格式的算法实现。用一个数值例子去说明数值计算结果与理论结果相吻合。进一步说明这种基于POD降阶有限差分外推迭代格式对于求解二维双曲方程是可行和有效的。

  • 标签: 特征投影分解 降阶有限差分外推迭代格式 双曲方程
  • 简介:在数学教学中,目前存在一个很容易被忽视的问题,就是学生在归纳反思的时候过于依赖题型的模式化,总希望给某个题目找到模型,以后再次遇到时就不用再花费脑筋,直接套用模式即可.诚然,在数学教学中,模式化的寻求和归纳必不可少,也就是通法通性的掌握是必要的,但更重要的是要大力培养学生面对新问题时能有自己的想法,

  • 标签: 数学问题 发散性 数学教学 模式化 归纳 学生
  • 简介:用辛几何的观点得到了四阶杆振动方程的一族十字架辛格式,对于四阶杆振动方程的稳定条件不一定随时间方向的精度的提高而放宽,而随空间方向精度的提高稳定范围缩小.数值例子表明单辛算法具有良好的数值稳定性.

  • 标签: 四阶杆振动方程 HAMILTON系统 辛格式 稳定条件
  • 简介:本文将文献中的求解二维的有交界面的椭圆型方程的浸入界面方法推广到界面及间断条件都由定义在界面某个邻域的网格函数点上的函数隐式提供的情形,给出了一种间断条件捕捉格式。它特别适合干隐式界面跟踪法如水平集方法。对原浸入界面方法中的界面间断关系,确定不规则点差分格式的系数的代数方程组和修正项都针对新的情形进行了相应的修正。该格式利用标准的二阶拉格朗日插值计算间断函数沿界面的导数,避免了文献中的用样条函数的局部界面重构,易于执行。数值计算验证了该法的关于最大模的二阶收敛性。

  • 标签: 有交界面的椭圆型方程 浸入界面方法 水平集函数 差分方法 拉格朗日插值
  • 简介:本文通过研究丝条的条干不匀,分析不匀的原因,从而达到改进的目的。

  • 标签: 不匀率 丝条 变异系数
  • 简介:构建了一类捕食者相互竞争且具有不同功能反应的随机种群模型.综合考虑白噪声和电噪声的扰动对模型的影响,研究了系统的动力学行为.运用切比雪夫不等式,讨论了系统的有界性.构造恰当的李雅普诺夫函数并运用It8公式,得到了系统随机持久和灭绝的条件.最后,利用指数鞅不等式等技巧,研究了系统的渐近性.

  • 标签: 功能反应函数 马尔可夫转换 持久性 灭绝性 渐近性