简介:摘要院随着个人消费贷款的普及,贷款人的个人信用评估变得尤为重要。本文选取德国和澳大利亚某商业银行的个人信贷数据为样本数据,采用主成分分析提取样本数据的主成分,通过遗传算法优化神经网络的网络结构、初始连接权值和阀值,然后将优化的神经网络算法用于个人信用评估。与其他算法的准确率比较的结果表明,基于主成分分析—遗传算法—神经网络算法的个人信用评估准确率要高,而且模型的网络结构得到优化,运算时间也有缩短。
简介:利用粗糙集的约简算法及类边界集分别选出影响绩效的核心因素和样本的边界集,将其应用于C-均值聚类网络得到具有概率信息(权重)的样本,作为支持向量机(SVM)的输入建立员工绩效评估模型。实例表明,该方法拟合率高,且性能优于SVM算法。