学科分类
/ 1
9 个结果
  • 简介:AimingtosolvethemisclassificationproblemsofunsupervisedpolarimetricWishartclassificationalgorithmbasedonFreemandecomposition,anunsupervisedPolarimetricSyntheticApertureRadar(SAR)Interferomery(PolInSAR)classificationalgorithmbasedonoptimalcoherencesetparametersisstudiedandproposed.ThisalgorithmusestheresultofFreemandecompositiontodividetheimageintothreebasiccategoriesincludingsurfacescattering,volumescattering,anddouble-bounce.Then,thePolInSARoptimalcoherencesetparametersareusedtofinelydivideeachofthethreebasiccategoriesinto9categories,andthewholeimageisdividedinto27categories.BecauseboththeFreemandecompositionresultandoptimalcoherencesetparametersindicatespecificscatteringcharacteristics,thewholeimageismergedinto16categoriesbasedonphysicalmeaning.Atlast,theWishartclusterisemployedtoobtainthefinalclassificationresult.Topreservethepurityofscatteringcharacteristics,pixelswithsimilarscatteringcharacteristicsarerestrictedtobeclassifiedwithotherpixels.Thefinalclassificationresultseffectivelyresolvethemisclassificationproblem,notonlythebuildingscanbeeffectivelydistinguishedfromvegetationinurbanareas,butalsotheroadiswelldistinguishedfromgrass.Inthispaper,theE-SARPolInSARdataofGermanAerospaceCenter(DLR),areusedtoverifytheeffectivenessofthealgorithm.

  • 标签: 分类算法 相干 监督 SAR数据 散射特性 极化合成
  • 简介:Fieldcomputation,anemergingcomputationtechnique,hasinspiredpassionofintelligencescienceresearch.Anovelfieldcomputationmodelbasedonthemagneticfieldtheoryisconstructed.Theproposedmagneticfieldcomputation(MFC)modelconsistsofafieldsimulator,anon-derivativeoptimizationalgorithmandanauxiliarydataprocessingunit.ThemathematicalmodelisdeducedandprovedthattheMFCmodelisequivalenttoaquadraticdiscriminantfunction.Furthermore,thefiniteelementprototypeisderived,andthesimulatorisdeveloped,combiningwithparticleswarmoptimizerforthefieldconfiguration.Twobenchmarkclassificationexperimentsarestudiedinthenumericalexperiment,andonenotableadvantageisdemonstratedthatlesstrainingsamplesarerequiredandabettergeneralizationcanbeachieved.

  • 标签: 计算模型 磁场理论 模式分类 数据处理单元 二次判别函数 粒子群优化
  • 简介:基于地面的云分类由于在在不同大气的条件下面的云的外观的极端变化是挑战性的。质地分类技术最近被介绍了处理这个问题。一个新奇质地描述符,突出的本地二进制模式(SLBP),为基于地面的云分类被建议。SLBP利用最经常发生的模式(突出的模式)捕获描述的信息。这个特征使SLBP柔韧到噪音。用基于地面的云图象的试验性的结果证明建议方法能比当前的最先进的方法完成更好的结果。

  • 标签: 云分类 二进制模式 突出 陆基 大气条件 分类技术
  • 简介:电子显微镜学图象分类的目的是根据他们的类似把设计图象分成不同的类。区分图象通常要求这些图象首先被排列。然而,图象的排列是为一个高度吵闹的数据集合的一项困难的任务。在这份报纸,我们为避免排列建议一个翻译和基于Fourier变换不变的旋转。一个新奇分类方法因此被建立。加速分类速度,第二等班在分类过程被介绍。测试结果也证明我们的方法很有效、有效。分类结果用我们的不变也与用另外的存在invariants的结果相比,显示出那我们的不变导致好一些的结果。[从作者抽象]

  • 标签: 分类方法 旋转不变性 单粒子 预测 投影图像 电子显微镜
  • 简介:Inthispaper,wepresentasimplebutpowerfulensembleforrobusttextureclassification.Theproposedmethodusesasingletypeoffeaturedescriptor,i.e.scale-invariantfeaturetransform(SIFT),andinheritsthespiritofthespatialpyramidmatchingmodel(SPM).Inaflexiblewayofpartitioningtheoriginaltextureimages,ourapproachcanproducesufficientinformativelocalfeaturesandtherebyformareliablefeaturepondortrainanewclass-specificdictionary.Totakefulladvantageofthisfeaturepond,wedevelopagroup-collaborativelyrepresentation-basedstrategy(GCRS)forthefinalclassification.Itissolvedbythewell-knowngrouplasso.Butwegobeyondofthisandproposealocality-constraintmethodtospeedupthis,namedlocalconstraint-GCRS(LC-GCRS).Experimentalresultsonthreepublictexturedatasetsdemonstratetheproposedapproachachievescompetitiveoutcomesandevenoutperformsthestate-of-the-artmethods.Particularly,mostofmethodscannotworkwellwhenonlyafewsamplesofeachcategoryareavailablefortraining,butourapproachstillachievesveryhighclassificationaccuracy,e.g.anaverageaccuracyof92.1%fortheBrodatzdatasetwhenonlyoneimageisusedfortraining,significantlyhigherthananyothermethods.

  • 标签: 纹理分类 基于策略 合作 稳健 纹理图像 特征描述
  • 简介:Objective:Toexploretherelationshipbetweenperoxisomeproliferatoractivatedreceptor-gamma(PPARγ)andperoxisomeproliferator-activatedreceptor-gammacoactivator-1(PGC-1)expressioningastriccarcinoma(GC),andanalyzetheircorrelationswithclinicopathologicalfeaturesandclinicaloutcomesofpatients.Methods:Thetwo-stepimmunohistochemicalmethodwasusedtodetecttheexpressionofPPARγandPGC-1in179casesofGC,and108casesofmatchednormalgastricmucosa.Besides,16casesoffreshGCspecimensandcorrespondingnormalgastricmucosaweredetectedforPGC-1expressionwithWesternblotting.Results:ThepositiveratesofPPARγandPGC-1expressionweresignificantlylowerinGC(54.75%,49.16%)thaninnormalgastricmucosa(70.37%,71.30%),respectively(P<0.05).ThedecreasedexpressionofPGC-1inGCwasconfirmedinourWesternblotanalysis(P=0.004).PPARγandPGC-1expressionswererelatedtoLauren’stypesofGC(P<0.05).PositivecorrelationwasfoundbetweenPPARγandPGC-1expressioninGC(rk=0.422,P<0.001).ThesurvivaltimeofPPARγnegativeandpositivepatientswas36.6±3.0vs.38.5±2.7months,andnostatisticaldifferencewasfoundbetweenthe5-yearsurvivalratesoftwogroups(34.4%vs.44.1%,P=0.522,log-ranktest);thesurvivaltimeofPGC-1negativeandpositivepatientswas36.2±2.8vs.39.9±2.9months,whilenostatisticaldifferencewasfoundbetweenthe5-yearsurvivalratesofthetwogroups(32.0%vs.48.2%,P=0.462,log-ranktest)Conclusions:DecreasedexpressionofPPARγandPGC-1inGCwasrelatedtotheLauren’sclassification.TheirexpressionsinGCwerepositivelycorrelated,indicatingthattheirfunctionsingastriccarcinogenesismaybecloselyrelated.

  • 标签: PGC-1 PPAR 激活因子 过氧化物酶体增殖物激活受体 胃癌 BLOT分析