学科分类
/ 25
500 个结果
  • 简介:摘要:众所周知,我国目前处于一个重要信息化和智能化背景之下,各种智能技术已经在各个领域内进行运用,并且随着时间的推移,这些智能技术均起到了很好的效果和作用,人脸识别技术正是其中之一。在现代社会发展过程中,人脸识别系统和算法已经在信息验证、人物信息识别等等方面进行运用,而且现代国内的电子商务和网络银行开始广泛进行运用,因此人脸识别算法无论是在当前还是未来的发展进程中,均具有很好的发展和应用前景,因此,在后续的发展过程中,需要重视人脸识别技术的发展。在本文中主要介绍一种基于RBF神经网络的人脸识别算法,其主要目的在于促进国内人脸识别水平得到对应的提升。

  • 标签: RBF神经网络 人脸识别 识别系统 识别算法 研究分析
  • 简介:汽车油耗直接影响着汽车的经济性,真实油耗数据的准确检测对汽车产品管理的科学化以及建设资源节约型社会具有积极的意义。根据行车电脑往往不能准确显示油耗值的缺点.提出油耗值的RBF神经网络标定方法。实验表明,该方法能取得较好的标定效果,并且标定方法简单实用可行。为汽车油耗值的实时监测提供了一种有效的方法。

  • 标签: 油耗 RBF神经网络 标定模型
  • 简介:提出了一种基于模糊观测数据的RBF神经网络(FORBFNN),用于解决一类输出不可精确测量但可用模糊隶属度来表征的非线性系统建模问题.神经网络模型中各隐层神经单元的权重系数采用一种新的模糊EM算法辨识获得;隐层神经单元的数量及径向基函数的中心和宽度基于一种数据驱动的方法自适应确定,即首先初始生成一个隐层单元,然后根据一定的规则逐步加入新的单元,该过程不断迭代直到模型满足预设要求.该方法同时考虑了模型的复杂度及预测精度.数值模拟实验结果表明该建模方法是有效的,且建立的模型具有较高的预测精度.

  • 标签: RBF神经网络 模糊隶属度 不精确观测值 回归模型
  • 简介:摘要:针对机械臂轨迹规划时各个关节运动控制不光滑,本文选用IRB120机械臂对该模行末端执行器进行运动规划。首先建立机械臂连杆坐标系并得到D-H参数,并运用Matlab Robotics toolbox工具箱建立机械臂模型,分析机械臂从初始位姿到目标位姿时机械臂的角位移情况。借助MATLAB中的神经网络工具箱设计RBF神经网络,利用六个关节的角位移量训练RBF神经网络。仿真结果表明,采用RBF神经网络优化得到的角位移为平滑曲线。

  • 标签:
  • 简介:针对网络态势感知中的预测精度问题,提出了基于广义径向基函数(RBF神经网络网络安全态势预测方法。该方法利用K-means聚类算法确定RBF的数据中心和扩展函数,并采用最小均方算法调整权值,得出态势值前后之间的非线性映射关系,并进行态势预测。仿真试验表明,该方法能较准确获得态势预测结果,提高网络安全的主动安全防护。

  • 标签: 广义径向基函数神经网络 态势预测 K-MEANS聚类算法 最小均方算法
  • 简介:在工业过程控制系统中,许多被控对象具有纯滞后的性质,这种纯滞后环节将导致系统不稳定。针对这种情况设计了一种控制器,这种控制器结合了模糊控制和神经网络控制的优点,可以在线调整得到一组最优的PID控制参数。仿真结果表明这种控制器结构简单,对纯滞后系统的控制效果良好。

  • 标签: 纯滞后 模糊神经网络 PID控制 参数调整
  • 简介:针对坦克炮身管精确定位和平衡问题,提出了一种基于干扰观测器(DOB)的RBF神经网络滑模控制策略。由于炮控身管平衡系统模型中存在某些时变的不确定参数,所以利用RBF神经网络的万能逼近特性来辨识该参数。为了更好地提升系统的抗干扰性能,引入了干扰观测器,对系统外部扰动进行实时观测。通过仿真试验可知,该控制策略有效地提高了系统的稳定性,消除了滑模控制过程中固有的抖振现象,并大大提高了电液伺服系统的跟踪性能,使系统具有良好的鲁棒性。

  • 标签: 自动控制技术 身管精确定位和平衡 干扰观测器 RBF神经网络滑模 鲁棒性
  • 简介:现金流预测是项目投资决策和评价企业未来价值的关键性因素。本文通过采用滑动窗技术确定RBF神经网络的训练样本和测试样本,然后通过变换不同的分布函数值对模型进行建模和仿真。实证研究结果表明,RBF神经网络模型训练和仿真结果稳定,预测效果良好。

  • 标签: 滑动窗技术 RBF神经网络 现金流预测
  • 简介:针对分数阶混沌系统的同步问题,提出一种基于径向基函数(RadialBasisFunction,RBF神经网络的控制器。利用RBF神经网络对同步误差系统进行补偿控制,神经网络的权值可以在线调整,使得同步误差渐近收敛到零点。基于Lya-punov稳定性理论,分析了该控制器的稳定性。分别以分数阶Chen系统的同步和分数阶Liu系统的同步为例进行了数值仿真,仿真结果验证了所设计的控制器的有效性和鲁棒性。

  • 标签: 分数阶 RBF神经网络 混沌同步
  • 简介:摘要:为了提高网络安全态势预测的准确性和可靠性,研究提出了一种基于CS-RBF(改进径向基函数)神经网络的预测方法。该方法在传统RBF神经网络的基础上引入了改进算法,以适应复杂多变的网络环境。通过对网络安全数据进行预处理和特征选择,CS-RBF神经网络能够有效地处理多维数据,并进行准确的态势预测。研究表明,CS-RBF神经网络相较于传统预测方法,具有更高的预测精度和稳定性。此方法不仅提升了网络安全态势预测的效果,也为未来相关领域的研究提供了新的思路和工具。

  • 标签: CS-RBF神经网络 网络安全 态势预测 改进算法 预测准确性
  • 简介:针对非线性系统的控制问题,提出了一种基于黄金分割法的RBF神经网络预测控制算法。该算法以神经网络作为预测模型,用黄金分割法优化控制器,其中以控制变量的约束.条件作为优化的初始区问。针对化工过程蒸馏塔控制系统,通过仿真计算验证了该方法的有效性。

  • 标签: 预测控制 RBF 神经网络 黄金分割
  • 简介:摘要:随着时间的推移,国内社会已经进入到一个快速发展的信息时代、智能时代,其重要表现就是不同的识别系统开始在各个领域内进行运用,人脸识别系统就是其中之一,并且取得了很好的作用和效果。目前人脸识别系统的研究已经成为了模式识别领域中的一个重点课题,在身份认证、智能监控、信息安全和金融安全等等领域都具有良好的发展前景。目前人脸识别系统的运用主要具有以下几个芳年,包含安全控制、司法运用等等,后续很有可能发展成为一个巨大的、对人类生活、工作产生深刻影响的产业,需要给予相应的重视。故此,在本文中主要针对基于模糊RBF神经网络的人脸识别系统进行系统的研究和分析,其主要目的在于促进基于模糊RBF神经网络的人脸识别系统的运用,使得这一系统具有很好的学习能力,提升人脸识别的准确率。

  • 标签: 模糊神经 神经网络 人脸识别 识别系统 研究分析
  • 简介:摘要由于烘丝生产前操作工需要根据生产经验预测入口含水率,然而车间内环境温湿度、烘丝前工序设备状态等条件的变化,导致烘前含水率变化较大,仅靠经验预测烘前含水率,预测结果误差较大,导致操作工设置参数不合理,出口含水率波动较大,影响产品的感观质量。因此,本文通过对历史数据进行分析处理后,采用RBF神经网络,建立烘前含水率预测模型,并在烘丝工序操作终端增加人机交互界面,操作工选择工单信息、输入相应的参数即可完成烘丝入口含水率的预测,预测结果误差为,可以满足生产要求。

  • 标签: RBF神经网络 烘前水分 数据处理
  • 简介:提出了一种基于模糊RBF神经网络的永磁同步电机DTC控制方案。该方案是在直接转矩控制系统的基础上,在模糊控制器前端加入了RBF神经网络模块,在对转矩误差、定子磁链误差和磁链角度进行映射前,对其进行数据处理获得合理的模糊分级,并作为模糊控制器的输入以便选择合理的电压空间矢量。RBF神经网络模块的加入使得系统具有更好的鲁棒性,仿真结果表明,基于模糊RBF神经网络的永磁同步电机DTC控制系统具有较好的动、静态性能,能够实现快速响应。

  • 标签: 永磁同步电机 直接转矩 模糊控制 RBF神经网络
  • 简介:摘要在电力市场中,风电所占电网的比例越来越大。但由于风的波动及其不可控性,风电场的发电量也在随机变化,风速是影响产能最直接最根本的因素,所以很有必要对其进行预测。本文采用RBF人工神经网络模型对未来短时间风速进行预测。通过对风速反复训练与检测来选择一组合适的模型参数,并对模型进行了误差分析。研究结果表明,使用RBF神经网络对未来风速进行短时间预测能够达到较好效果。

  • 标签:
  • 简介:摘要:职业教育增值性评价对提升教育质量、促进教育公平、推进教学改革等方面均具有重要的意义,但在实践过程中,传统增值性评价存在诸多问题,如模型解释力不足、统计精准度不够、忽视数据库整合及忽略非标准化测验等。本文提出一种RBF神经网络在线建模的增值性评价方法,利用RBF神经网络良好逼近能力和低泛化能力,解决增值性评价中的数据处理、模型构建及结果评估问题,以提高评价的准确性和可靠性,提升职业教育的质量。

  • 标签: 教育评价改革 RBF神经网络 增值评价
  • 简介:摘要准确的预测风力发电机组的输出功率对电力系统稳定、电力系统调度和风电场运行都具有重要意义。从数学模型及风机实际获得的数据出发,分析出风速、风向、空气密度、大气压强对风力发电机组输出功率的影响。设计了基于数值天气预报(NWP)的径向基函数(RBF神经网络风电功率短期预测模型。应用该模型进行了24h后的风电输出功率预测,预测误差在11%附近,表明该方法预测精度较高。

  • 标签: 数值天气预报(NWP) RBF神经网络 功率预测 短期预测
  • 简介:抄纸过程中纸机系统具有大滞后、非线性、时变等特点,纸张定量与水分之间存在强耦合效应,针对这些问题,设计了一种基于RBF神经网络的PID解耦控制方法。利用RBF神经网络辨识定量与水分的数学模型,实时调整PID控制器的参数,实现系统的解耦功能。仿真结果表明,该方法具有良好的静态、动态性能和很强的自适应性,能有效解决纸张定量和水分之间的耦合作用。

  • 标签: RBF神经网络 定量 水分 解耦控制