简介:Fortheconservativeandnon-conservativeschemesofnonlinearevolutionequations,bytakingthetwo-dimensionalshallowwaterwaveequationsasanexample,acomparativeanalysisoncomputationalstabilityiscarriedout.Therelationshipbetweenthenonlinearcomputationalstability,thestructureofthedifferenceschemes,andtheformofinitialvaluesisalsodiscussed.
简介:InthispaperconservationlawsofnonholonomicnonconservativedynamicalsystemsarestudiedbyusingthedifferentialvariationalprinciplesofJourdainandthegeneralizedNoether’sidenti-tiesofnonconservativesystemssubjecttofirstordernonlinearnonholonomicconstraintsareprovided.
简介:Inthispaper,weprovethatforholonomicnonconservativedynamicalsystemthePoincareandPoincaré-Cartanintegralinvariantsdonotexist.Insteadofthem,weintroducetheintegralvariantsofPoincaréCartan’stypeandofPoincaré’stypeforholonomienoneonservativedynamicalsystems,andusethesevariantstosolvetheproblemofnonlinearvibration.Wealsoprovethattheintegralinvariantsintro-ducedinreferences[1]and[2]aremerelythebasicintegralvariantsgivenbythispaper.
简介:Thecurrentstructure-preservingtheory,includingthesymplecticmethodandthemultisymplecticmethod,paysmostattentionontheconservativepropertiesofthecontinuoussystemsbecausethattheconservativepropertiesoftheconservativesystemscanbeformulatedinthemathematicalform.But,thenonconservativecharacteristicsarethenatureofthesystemsexistinginengineering.Inthisletter,thestructure-preservingapproachfortheinfinitedimensionalnonconservativesystemsisproposedbasedonthegeneralizedmulti-symplecticmethodtobroadentheapplicationfieldsofthecurrentstructure-preservingidea.Inthenumericalexamples,twononconservativefactors,includingthestrongexcitationonthestringandtheimpactonthecantilever,areconsideredrespectively.Thevibrationsofthestringandthecantileverareinvestigatedbythestructure-preservingapproachandthegoodlong-timenumericalbehaviorsaswellasthehighnumericalprecisionofwhichareillustratedbythenumericalresultspresented.
简介:Inthispaper,theparametricequationswithmultipliersofnonholonomicnonconservativesys-temsintheeventspaceareestablished,theirpropertiesarestudied,andtheirexplicitformulationisobtained.Andthenthefieldmethodforintegratingtheseequationsisgiven.Finally,anexampleillustratingtheappli-cationoftheintegrationmethodisgiven.