简介:为非强迫的优化在方法上介绍研究。学习的假设;主要结果;在简化Armijo类型下面的方法的集中性质衬里搜索。
简介:Theconjugategradientmethodforunconstrainedoptimizationproblemsvarieswithascalar.Inthisnote,ageneralconditionconcerningthescalarisgiven,whichensurestheglobalconvergenceofthemethodinthecaseofstrongWolfelinesearches.ItisalsodiscussedhowtousetheresulttoobtaintheconvergenceofthefamousFletcher-Reeves,andPolak-Ribiere-Polyakconjugategradientmethods.Thattheconditioncannotberelaxedinsomesenseismentioned.
简介:Themainpurposeofthispaperistoprovidearestartingdirectionforimprovingonthestandardconjugategradientmethod.Ifadrasticnon-quadraticbehaviouroftheobjectivefunctionisobservedintheneighbourofxk,thenarestartshouldbedone.Thescalingsymmetricrank-oneupdatewithDavidon’soptimalcriterionisappliedtogeneratetherestartingdirection.Itisprovedthattheconjugategradientmethodwiththisstrategyretainsthequadratictermination.Numericalexperimentsshowthatitissuccessful.
简介:在这份报纸,我们在存在上解决一个问题结合线性多步方法(LMSM)的symplecticity,否定结果被获得。[从作者抽象]
简介:LetKbearight-continuousandnondecreasingfunction.AfunctionfanalyticintheunitdiskDbelongstothespaceDKifD|f(z)|2K(1-|z|2)dA(z)<∞.DecompositiontheoremsforDKspacesareestablishedinthispaper.Asanapplication,weobtainacharacterizationofinterpolationbyfunctionsinDKspaces.Furthermore,wecharacterizefunctionsinDKspacesbyconjugatepairs.
简介:Thispaperconsidersthefollowingquestion:GivenanAnosovendomorphismfonT~m,whetherfistopologicallyconjugatetosomehyperbolictotalendomorphism?ItiswellknownthattheanswerforAnosovdiffeomorphismsandexpandingendomorphismsisaffirmative.HweverfortheremainderAnosovendomorphisms,aquitedifferentanswerisobtainedinthispaper,i.e.,forgenericAnosovendomorphisms,theyarenottopologicallyconjugatetoanyhyperbolictoralendomorphism.
简介:Inthispaperweconsidertheglobalconvergenceofanyconjugategradientmethodoftheformd1=-g1,dk+1=-gk+1+βkdk(k≥1)withanyβksatisfyingsumeconditions,andwiththestrongwolfelinesearchconditions.Undertheconvexassumptionontheobjectivefunction,weprevethedescenfpropertyandtheglobalconvergenceofthismethod.
简介:Thispaperderivesfirstordernecessaryandsufficientconditionsforunconstrainedconed.c.Programmingproblemswheretheunderlinedspaceispartiallyorderedwithrespecttoacone.Theseconditionsaregivenintermsofdirectionalderivativesandsubdifferentialsofthecomponentfunctions.Moreover,conjugatedualityforconed.c.Optimizationisdiscussedandweakdualitytheoremisprovedinamoregeneralpartiallyorderedlineartopologicalvectorspace(generalizingtheresultsin[11]).
简介:APRP-typesmoothingconjugategradientmethodforsolvinglargescalenonlinearcomplementarityproblems(NCP(F))isproposed.Ateachiteration,twoArmijolinesearchesareperformed,whichguaranteesthepositivepropertyofthesmoothingparameterandminimizesthemeritfunctionformedbyFischer-Burmeisterfunction,respectively.GlobalconvergenceisstudiedwhenF:R~n→R~nisacontinuouslydifferentiableP_0+R_0function.Numericalresultsshowthatthemethodisefficient.
简介:LetAbeann×nsymmetricpositivedefinitematrix,xbeann×1unknownvectorandb,ann×1givenvector.ConsiderlinearalgebricequationssystemAx=b.(1)MakeanincompleteCholeskyfactorizationofAA=LLT+R(2)whereLisalowertriangularmatrix.UseLwegetapreconditionedequationBy=dwhereB=L-1AL-T,y=LTxandd=L-1b.
简介:Arevisedconjugategradientprojectionmethodfornonlinearinequalityconstrainedoptimizationproblemsisproposedinthepaper,sincethesearchdirectionisthecombinationoftheconjugateprojectiongradientandthequasi-Newtondirection.Ithastwomerits.Theoneisthattheamountofcomputationislowerbecausethegradientmatrixonlyneedstobecomputedonetimeateachiteration.Theotheristhatthealgorithmisofglobalconvergenceandlocallysuperlinearconvergencewithoutstrictcomplementaryconditionundersomemildassumptions.Inadditionthesearchdirectionisexplicit.
简介:TwoArmijo-typelinesearchesareproposedinthispaperfornonlinearconjugategradientmethods.ThetwoArmijo-typelinesearchesareshowntoguaranteetheglobalconvergenceoftheDYmethodfortheunconstrainedminimizationofnonconvexdifferentiablefunctions.Further,ifthefunctionisstrictlyconvex,thetwoArmijo-typelinesearchesandanotherArmijo-typelinesearcharealsoshowntoguaranteetheconvergenceoftheDYmethod.