简介:摘要:PTMEG废水是一种难处理的工业废水,具有成分复杂,化学耗氧量高等特点。是一类难处理的特殊废水,如果直接排入环境,会对生态环境和人类建康造成严重的危害[1]。本文通过重铬酸钾氧化法测得废水COD为320000mg/L,首先选择聚丙烯酰胺为絮凝剂对PTMEG废水进行初级絮凝处理。絮凝后选择Fenton法对废水进行高级氧化处理,氧化后的废水COD降解率为94.49%;其COD值为152mg/L达到国家2级排放标准(250mg/L)。
简介:摘要随着当前社会水平的不断发展与进步,时代的不断变化对于氯碱化工的高氯废水COD的重视程度也逐渐增强。当前对于污水的处理已经是一个大的问题,就更需要基于污水处理足够的重视,国家环保总局规定采用酸性重铬酸钾法测定COD,即在强酸并加热的条件下,用过量重铬酸钾处理水样时所消耗氧化剂的量,以氧(mg/L)表示。传统COD测定法,水样经回流氧化处理后,应用硫酸亚铁滴定剩余重铬酸钾(试亚铁灵作指示剂),操作简单,测定结果重现性较好,但所需样品量较多(如20mL),试剂用量较多(试剂有毒),分析时间相对较长,能耗较大。而密闭催化消解-分光光度法测定COD,只需要较少的样品量(如2mL),试剂用量较少,样品消化能耗少,批量处理样品分析速度较快。由于密闭催化消解-分光光度法自动化程度较高,减少工作量,逐渐受到分析人员的关注。本文根据相关的内容进行调研得出一些想法期望基于相关人员一定的帮助。
简介:摘要:化学需氧量(COD)作为评价水体污染的重要指标,已在环境监测中发挥着关键作用。目前,COD检测技术主要有容量分析、分光光度法、电化学法等。近年来,随着检测技术的进步,尤其是自动化和实时监测技术的发展,COD检测的精度和效率得到显著提升。未来,纳米材料和智能传感器的应用将会推动COD检测技术向更高的灵敏度和更广的应用范围发展。同时,数据处理和信息化技术的融合,也将促进环境监测的智能化和精准化。
简介:摘要:建立了利用目视比色法快速预判水中苯的浓度范围的方法。在本次试验温度25.5℃,湿度69.4%条件下,配制40ug/L、100ug/L、150ug/L、200ug/L、400ug/L、1000ug/L水中苯标准溶液,使用COD快速检测包制作浓度系列的显色表;使用COD快速检测包测定浓度为80ug/L、300ug/L、600ug/L的三组水中苯标准溶液的显色情况;使用COD快速检测包测定未知浓度的水中苯标准样品,判断其浓度范围。实验结果表明COD快速检测包在相同温度、时间间隔下,对不同浓度梯度的水中苯样品显不同颜色并有明显变色趋势,对相同浓度样品重复测定显色情况一致,能准确判定未知浓度水中苯样品的浓度范围。因此该方法可作为便携式气相色谱-质谱法在水中苯的应急监测中的预判样品浓度的辅助方法。
简介:摘要建立了适用于高氯离子、低COD废水中COD的重铬酸钾测定方法。分别采用甘油、二氯丙醇、β,β′-二氯异丙醚和氯化钙配制模拟高氯废水,考察了氧化剂重铬酸钾溶液浓度、掩蔽剂加入量(以m(HgSO4)∶m(Cl-)表示)对测定效果的影响。实验结果表明以低浓度(0.05mol/L)重铬酸钾溶液为氧化剂时,测定数据波动范围小,相对误差也低(-1.4%~+0.4%);对于高氯低COD废水的COD测定,当COD大于100mg/L时按m(HgSO4)∶m(Cl-)=10∶1加入硫酸汞掩蔽剂,当COD小于100mg/L时按m(HgSO4)∶m(Cl-)=20∶1加入硫酸汞掩蔽剂,并采用浓度为0.05mol/L的重铬酸钾溶液作为氧化剂,能较好地消除氯离子对COD测定的干扰,相对误差在5%以内;将优化后的测定条件应用于实际环氧氯丙烷生产废水COD的测定,重现性良好,当m(HgSO4)∶m(Cl-)分别为10∶1和20∶1时,相对误差分别为+3.3%和+2.9%,COD平均回收率分别为103.4%和102.9%。