简介:研究了基于认知评估原理的多维耳语音情感识别.首先,比较了耳语音情感数据库和数据采集方法,研究了耳语音情感表达的特点,特别是基本情感的表达特点.其次,分析了耳语音的情感特征,并通过近年来的文献总结相关阶特征在效价维和唤醒维上的特征.研究了效价维和唤醒维在区分耳语音情感中的作用.最后,研究情感识别算法和应用耳语音情感识别的高斯混合模型.认知能力的评估也融入到情感识别过程中,从而对耳语音情感识别的结果进行纠错.基于认知分数,可以提高情感识别的结果.实验结果表明,耳语音信号中共振峰特征与唤醒维度不显著相关,而短期能量特征与情感变化在唤醒维度相关.结合认知分数可以提高语音情感识别的结果。
简介:为了解决目前e-Learning教学系统中的情感交流匮乏问题,提出一种新的基于语音情感识别技术的e-Learning系统模型。语音作为人类最重要的交流媒介之一,不仅携带着大量的文字符号信息,还包含了人类丰富的情感信息。利用语音情感识别技术获取和识别学习者的学习情感状态,从而实现e-Learning教学系统的智能化和人性化。本文对该系统的关键技术作了详细阐述。
简介:语音识别技术近年来得到了飞速的发展并且在越来越多的领域得到了广泛的应用。隐马尔可夫模型(HMM)语音识别技术是一种基于训练数据提供的概率自动构造识别系统的技术,主要用于大量词汇的语音识别,而且具有良好的识别性能和抗噪性能。因此,一般的语音识别系统都采用基于HMM的识别方法作为其基本算法。本文列举了语音识别在教学中的应用示例来分析其基本算法。
简介:摘要:本文面向大学生心理状态评估的需求,提出了一种基于多特征融合的语音情感识别方法。该方法通过主成分分析方法充分融合语句级的全局特征以及语段级的局部特征,获取对语音信号中情感信息更具判别性的表征。本文方法在柏林语音情感数据库上进行的十折交叉验证实验取得了88.61%的识别率,验证了本文方法的有效性。
简介:摘要:在当前的发展阶段下,产业升级转型正在不断推进,在此背景下,人工智能技术获得了很大的发展,人工智能技术作为信息技术高度发展的产物,能够在社会生产生活中发挥重要的作用。目前人工智能技术已经被广泛的应用于各个行业领域中,相关技术的应用在转变产业发展方式,提升生产效率方面发挥了重要的作用。目前来看,在人工智能领域,语音识别技术发展较快,且技术也较为成熟,已经进入到了商业应用阶段,基于语音识别技术的智能语音机器人也被实际投入应用,并在应用的过程中展示出了较为明显成本优势以及效率优势。基于以上认识,本文从语音识别技术的概念出发,结合现阶段语音识别的实现难点,探讨语音识别技术在智能语音机器人中的应用要点以及应用实践,希望该研究能够能够为语音识别技术的实际应用提供一定的参考。
简介:;自动语音识别(AutomaticSpeechRecognition)简称ASR是目前属于AI领域的一项十分重要的技术,伴随着人工智能的高速发展,智能化生活走向主流,ASR技术已经走进了人们的生活中的方方面面。先简要介绍了语音识别的发展、语音信号的接收,再重点阐述了ASR运行过程中相关的原理及方法和与ASR技术的基本算法使用语音信号的处理涉及的三大算法即朴素模式算法,KMP算法,及HMM算法。
简介:传统的语音识别方法,信噪比较低时识别率也较低。为了使语音识别更具有环境适应性、抗噪性,从非齐次隐马尔可夫模型(nonhomogeneousHiddenMarkovModel,HMM)出发,结合自适应函数链神经元网络,训练出适应环境变化的混合语音模型,并采用该混合模型进行语音识别。实验结果表明,该模型适用于含噪语音的识别,特别是在低信噪情况下,可以相对提高识别率。
简介:摘 要 《深圳市生活垃圾分类管理条例》获广东省人大常委会批准,已于2020年9月1日起正式实施。对于还没接触或者接触但不熟悉垃圾分类的居民来说,很容易将生活垃圾错分类,同时在自主分类的时候也要花费不少时间。本文主要分析了智能垃圾分类的需求,通过运用现有技术解决目前遇到的问题,介绍了该设备的结构特点、工作原理、关键技术和使用效果等情况