简介:本文给出复微分方程的α-形式解的概念,并用weyl型分数阶积分给出形如t^2z^11(t)-(bt+c)z1(t)+βz(t)=0的复微分方程的一种α-负幂解形式,进而得到这种方程有多项式解的充分必要条件.
简介:本文通过变分法和临界点理论讨论了脉冲微分方程Neumann边值问题无穷多个解的存在性.
简介:对于二阶半线性中立型微分方程:(r(t)h'(t)α-1h'(t))'+g(t)x(σ(t))α-1x(σ(t))=0的振动性,本文在文[1]的基础上,利用广义Riccati变换、函数单调性和经典不等式,对其做了进一步研究,建立新准则改进了文献的结果,并提供了证明,并给出例子.
简介:研究型教学在专业课教学被越来越多的采用,给出了“常微分方程”课程研究型教学中的一个教学案例——用Banach不动点定理(压缩映射原理)探讨分数阶微分方程解的存在唯一性。
简介:研究了一类非线性Riemann-Liouville分数阶微分方程n点边值问题正解的存在性,通过构造相应的格林函数,运用锥拉伸与锥压缩不动点定理得到了此类问题至少存在一个正解的充分条件。
简介:讨论一类非线性分数阶微分方程耦合系统的Robin边值问题,应用Schauder不动点定理证明正解的存在性,然后利用Adomian分解方法求出该边值问题的近似解.另外,给出一个数值例子来说明我们主要结果的应用.