简介:AnewapproachtogenerateAself-organizingfuzzyneuralnetworkmodel.Anonlinearcombiningforecastmethodbasedonfuzzyneuralnetwork.Anovelclustermethodinfrizzyneuralnetworks.AnovelrobustPIDcontrollerdesignbyfuzzyneuralnetwork.Arecurrentfuzzyneuralnetwork:learningandapplication.Astudyofchatterpredictioninendmillingprocess(fuzzyneuralnetworkmodelwithinputsofcuttingconditionsandsound.Aweightedfuzzyreasoninganditscorrespondingneuralnetwork.
简介:Anti-controlofchaosbasedonfuzzyneuralnetworksinversesystemmethod;ApplicationofArtificialIntelligenceTechniquesforClassificationandLocationofFaultsonThyristor-ControlledSeries-CompensatedLine;AutonomousNavigationinaKnownDynamicEnvironment;BETAFUZZYNEURALNETWORKAPPLICATIONINRECOGNITIONOFSPOKENISOLATEDARABICWORDS;Controlsystemusingfuzzifiedinputneuralnetwork;CoordinatedcontrolofEGRandVNTinturbochargeddieselenginebasedonintakeairmassobserver;DesignofIntelligentOptimalTrackingControlforRobotManipulator。
简介:AConcurrentFuzzy-NeuralNetworkApproachforDecisionSupportSystems,Adynamicallygeneratedfuzzyneuralnetworkanditsapplicationtotorsionalvibrationcontroloftandemcoldrollingmillspindles,Afuzzymodelingofactivemagneticbearingsystemandslidingmodecontrolwithrobusthyperplaneusinμ-synthesistheory……
简介:针对无人动力伞在执行任务时常常在低空、城市上空等复杂气流环境飞行,无人动力伞的响应特性受到飞行速度、航向角和各种风的综合影响,具有的非线性和不确定性.导致事先设计的控制规则不再适合,对此基于PID的控制算法难以达到满意的控制效果.本文提出了一种模糊神经网络控制无人动力伞航向控制策略,利用RBF神经网络所特有的局部逼近能力,对模糊控制规则进行在线推理并获得连续输出,采用GA算法对神经网络参数进行调整来实现对模糊控制器规则库的优化和模糊规则的自动生成.使控制器能够进一步适应无人动力伞实时控制中的时变性和不确定性,保持良好的控制性能;仿真表明算法是可行的.
简介:摘要锅炉主蒸汽温度是火电厂锅炉运行的重要参数,对火电厂的经济效益、安全生产产生重大影响。由于当前火电厂机组容量大、参数高、效率高,控制汽温对象又具有大迟延、非线性、时变等诸多特点,常规PID串级控制系统往往很难保证系统最优状态运行,满足不了生产的需求。提出了基于模糊神经网络的主汽温系统PID控制,实现对过热蒸汽的有效控制,通过系统仿真表明,基于模糊神经网络的主汽温系统PID控制效果良好,因此该系统是切实可行的。
简介:直线电机驱动的H型数控平台系统在加工零件时,负载扰动、外部干扰和两电机安装的差异与机械耦合会影响单轴的跟踪精度且会产生同步误差。针对此问题,本文首先用拉格朗日方法给H型平台建模,然后提出一种改进的非奇异终端滑模控制(NTSMC)来进行位置控制器的设计,在不失滑模控制鲁棒性的情况下,有效地削弱了该控制所产生的抖振问题,提高了单轴的跟踪精度。在两轴间采用Sugeno型模糊神经网络(SFNN)补偿控制器来动态补偿H型平台的同步误差。通过模糊神经网络以任意精度逼近非线性系统的能力使同步误差在有限时间内趋近于零,以满足H型平台数控系统的高精度加工要求。仿真结果表明,所设计的控制系统能够有效提高系统的同步控制精度和鲁棒性。