简介:油气的成本效益和有效生产取决于准确的油藏描述和储层评价,而油藏描述和储层评价取决于所使用的岩石物理模型。涎水浊积砂岩地层的薄层性质使得这种砂-泥层序地层的岩石物理评价愈加困难,尤其是当泥质是以分散泥质和结构泥质或离散层存在时更是如此。为了预测油藏动态,了解储层中的泥质分布性质是必要的。采用Thomas-Stieber交会图是一种常用方法,它常与自然伽马和孔隙度资料一起使用来确定泥质分布。据我们所知,还没有根据地层各向异性测量值来评价泥质分布的方法。层状砂-泥岩地层是用宏观各向异性来描述的。多分量感应仪器和交叉偶极横波声波测井仪能给出地层宏观各向异性的直接测量,提供描述泥质分布的其它信息。在本文中,我们从理论上和用实际资料探索由测井资料得出的弹性性质计算出地层的宏观各向异性。我们已经研究出一种模型,它能够正演计算出弹性波速度和各向异性比。弹性波速度和各向异性比是砂岩-孔隙度、层状泥质含量和分散泥质含量、砂岩骨架弹性性质和泥质弹性性质的函数。我们的计算结果清楚地表明:●孔隙度和泥质含量对纵、横波速度有不同的影响;●横波速度强烈地依赖于泥岩分布,而具有不同极化度的横波速度上的差异可能与泥质分布(层状或分散、结构)有关;●纵波速度对泥质分布不敏感;●纵、横波速度比主要受孔隙度和泥质含量的控制;这也许可以用一个简单的体积控制的关系式解释Castagna的“泥岩-线”成立。我们已经对深水沉积环境资料进行分析。我们发现根据这种横波方法能够识别层状泥质地层和分散泥质地层,给出砂岩储层性质评价。各种弹性性质与泥质含量(由核测井曲线得到)的交会图证实了层状泥质和分散泥质的分离类似于经典的T
简介:那年我们出访瑞士,安排顺访位于楞次堡(Lenzburg)的电力半导体器件生产线。初联系时还是BBC,3个月后成行时就已经是ABB了(瑞典ASEA公司和瑞士BBC公司合并为ABB公司)。ABB的朋友带我参观了3-4英寸晶闸管芯片生产线之后,我问到这种全压接式结构——硅片同热补偿片(钼片、钨片)之间没有任何合金过程——相关的强度问题。这位朋友递给我1片报废了的3英寸硅片,问我能不能用手把它掰碎。在国内,大家都知道硅片很脆,3英寸大片一掰很容易碎。可是,此时此地的3英寸硅片却难以破掰碎。我马上联想到,国内用的是(111)面的硅片,这里可能用的是(100)面的硅片。(111)面是硅的解理面,机械强度很差。(100)面机械强度高多了,所以难以一下子掰碎它。在(100)面上,找到<111>方向,顺与之垂直的位置使劲,费了一番周折,该硅片才碎成几块,其破口全是斜坡,坡面即(111)面解理面。
简介:在具有垂直对称轴横向各向同性介质中,利用四种参数来确定中间至远偏移距转换波(C-波)动校正.它们是C-波叠加速度VC2,垂直速度比和有效速度比γ0和γeff,以及各向异性参数χeff.我们将这四种参数作为C波叠加速度模型.C-波速度分析的目的就是确定这种叠加速度模型.C-波叠加速度模型VC2,γ0,γeff,和χeff可以由P-波和C-波反射动校正资料获得.然而错误的传播是C-波反射动校正反演中的严重问题.当前短排列叠加速度由于是从双曲线动校正推算而得,因而其精度不足以为各向异性参数提供有意义的反演值.中间偏移非双曲线动校正不再被人们所勿略,而是可以用一个背景γ加以量化.非双曲线分析通过中间偏移距的γ校正量可以产生VC2,若数据不含燥音,其误差小于1%.方法稳健,允许γ启始假定值的误差达20%.该方法也适用垂直非均匀各向异性介质.精度的提高使能够用4分量地震资料计算各向异性参数.为此提出了两种工作流程:双扫描和单扫描流程.理论数据和实际数据的应用表明这两种流程得出的结果其精度相似,但是单扫描流程比双扫描更有效.
简介:从Maxwell方程出发,研究了平面波入射到空气和左手媒质的分界面上时,界面附近的电磁场,并将电场和磁场的关系表示为阻抗边界条件表达式,然后与右手媒质的阻抗边界条件进行对比,指出其形式上的统一和计算公式的区别。在此基础上,对多层媒质引用传输线法进行分析,并采用其给出的多层媒质的反射系数计算公式,计算了多层媒质内包含左手媒质时的表面反射系数,并对多层媒质包含左手媒质和右手媒质的情形进行了对比,研究了其反射系数幅度和相位的异同。最后将边界条件应用到阻抗半平面的散射场的计算中,探讨了平面波入射到单面涂敷左手媒质的阻抗半平面上时的散射场,并对场的计算公式作了简单分析。