简介:摘要本文根据某船减摇鳍二十年来的故障统计,提出超限故障是影响任务保障的重点难点,并对此类故障进行了原因分析。
简介:分析传统双半波整流电路的工作原理和存在的问题,提出并分析改进型高频双半波整流电路的原理及其优点,解决传统双半波整流电路中存在的问题。
简介:摘要 地铁车辆中,司机在任一端司机室均能通过操作客室照明开关来控制客室正常照明的打开和关闭。但在紧急照明情况下,司机关掉客室照明后,无法在单端司机室重新打开客室照明,操作繁琐,影响效率。因此通过在原客室照明控制电路的“照明关”列车线上增加一组由车辆网络输出的“充电机故障”常闭触点,改进客室照明控制电路,并对列车线状态进行编码,使调光控制器输出不同的照明控制指令。此种电路改进方法成本最小,改动最少,适用于已运营车辆的改造,在解决问题的同时使照明控制逻辑更加完善可靠。 关键词 地铁车辆;客室照明;控制电路 中图分类号 U231 1引言 地铁车辆客室照明设有两条照明电路,分别由两组冗余驱动电源供电。两条照明电路灯源交叉排列,均采用LED平面光源[1]。客室照明采用集中控制方式,在司机台上设有客室照明控制开关,在激活端和非激活端司机室都能控制客室照明。 (1)客室照明开启:车辆两端任何一端的客室照明开关打到“开启”位,且充电机无故障时,客室照明将工作在正常照明模式。 (2)客室照明关闭:车辆两端任何一端的客室照明开关打到“关闭”位,客室照明熄灭。 (3)客室紧急照明:当客室照明开关打到“开启”位,车辆网络检测到有充电机故障时,调光控制器接收到此低电平信号,控制客室照明进入紧急照明模式,车内所有灯具照度降低[2]。 2客室照明控制电路分析 在当前地铁车辆的客室照明控制电路设计中,司机在任一端司机室均能通过操作客室照明开关来控制客室正常照明的打开和关闭[3]。但在紧急照明情况下,司机关掉客室照明后,无法在单端司机室重新打开客室照明,操作麻烦,影响效率,需对电路进行改进。 当前地铁车辆客室照明的控制电路简化图如图1所示[4]。 图1 客室照明控制电路 图中,S11-S22均为客室照明开关,K12,K22为照明关继电器,K11,K21为照明开继电器,K13,K23为网络输出的“充电机故障”触点。司机将任一端司机室的客室照明开关操作到“ON”位,K11/K21得电,其触点K11-2/K21-2闭合,同时由于K11-1/K21-1触点断开切断了K12/K22的供电,使K12-2/K22-2触点失电闭合,因此使照明开列车线得电,照明关列车线失电,客室照明打开。当出现紧急供电情况时,K13/K23触点断开,照明开列车线失电,照明关列车线失电,进入紧急照明模式。 可以看出,在目前地铁车辆的照明控制逻辑中,客室照明进入紧急照明模式后,若因误操作将客室照明开关操作到“OFF”位,K12,K22均得电且自保持,关闭照明。此时若想打开照明,将列车一端的客室照明开关操作到“ON”位后,K11得电且自保持,但是由于照明开列车线被K13/K23触点切断,K21依然失电,使得K22依然得电,此时照明关列车线得电,照明开列车线失电,因此客室照明处于照明关断状态,无法打开。 3客室照明控制方案改进 3.1 照明控制电路改进 为避免上述问题,现在原客室照明控制电路的照明关列车线上增加一组网络输出的“充电机故障”常闭触点。当客室照明进入紧急照明模式后,若因误操作将客室照明开关操作到“OFF”位,此时由于“充电机故障”常闭触点断开,照明关列车线无法得电,因此照明无法被意外关闭。从源头上进行控制,使紧急照明一旦开启就无法被关闭,除非列车高压用电正常,自行恢复了正常照明,从而能使客室照明转入到受控状态;或者其紧急照明的情况维持到列车停止服务,直至列车休眠,客室照明失电关闭。 相比重新设计客室照明控制电路,例如新增紧急照明列车线,将正常照明与紧急照明分开控制来进行电路改进等方法,此种电路设计只在照明关断列车线中新增一个网络输出干节点,成本最小,改动最少,适用于已运营车辆的改造。改进后的电路图如图2所示。 图2 客室照明控制电路改进 图中,S11-S22均为客室照明开关,K12,K22为照明关继电器,K11,K21为照明开继电器,K13-K24为网络输出的“充电机故障”触点。客室照明开关操作到“ON”位和“OFF”位分别控制照明开继电器和照明关继电器线圈的得失电情况,这两个继电器的触点形成互锁回路。K13/K23常闭触点断开后,照明开列车线失电,进入紧急照明,同时K14/K24常闭触点断开,打断了电路改进前,由于照明开列车线被K13/K23触点切断,K21依然失电,使得K22依然得电,照明关列车线得电的情况。从而使照明关列车线无法得电,防止照明误关闭。 3.2 照明控制逻辑改进 为了防止K13、K14、K23、K24触点的误输出,而导致客室照明状态不对,改进后的照明控制电路,将“照明开”和“照明关”这两条列车线的得失电状态送到调光控制器的相应输入端口,通过对这两条列车线的得失电(1/0)状态进行编码,对应不同编码,调光控制器输出不同的照明控制指令。客室照明状态的编码逻辑如表1所示,其中,列车线为高电平时,对应编码为1;列车线为低电平时,对应编码为0。 表1 客室照明状态编码逻辑 客室照明状态 照明开列车线状态 照明关列车线状态 正常照明 1 0 紧急照明 0 0 照明关 0 1 故障 1 1 其中,“故障”状态时,考虑到实际运营中更注重客室照明的功能是可以维持打开状态而非关闭状态,因此编码为“11”(故障)时,客室照明为打开状态。由于要出现“故障”状态,需多个电气元件同时出现故障,概率极小,此状态几乎不会出现。 通过编码,对各种情况下的照明状态都给出了相应定义,增加了防错机制,使照明状态更加稳定可靠,降低了照明意外关断的概率。 4结论 通过对地铁车辆的客室照明控制电路进行优化,改进后的照明控制电路在电路设计上对人员的误操作进行了防护,避免了以往电路设计中,因误操作导致的紧急照明关闭后无法在单端打开,影响运营及维护效率的情况。同时,采用将照明关及照明开列车线的状态进行编码,来控制客室照明进行不同状态显示的方案,使控制逻辑更加完善可靠,避免了因列车线状态输出错误而导致的照明状态不符。 改进后的客室照明控制电路已在一些运营线路的车辆中应用,运行效果良好,安全可靠。 参考文献: [1]何英彪.一种轨道交通车辆客室照明冗余控制方案[J].技术与市场,2019,26(5):88. [2]EN 13272,铁路应用—公共交通系统铁路车辆电气照明[S].
简介:摘要: 本研究旨在分析并优化UV喷码设备的电路控制系统,以提升其在工业生产中的性能稳定性、故障处理效率及操作便捷性。UV喷码机作为现代工业不可或缺的部分,常因系统稳定性不足、故障诊断效率低下及维护成本高昂而受到限制。为应对这些挑战,本文采用实验测试和模拟研究,对电路板进行重新设计,引入高效能元件,并开发新的软件算法和用户界面。通过这些改进措施,预计故障发生率将减少至少30%,故障处理效率提升至少50%,并显著简化操作流程。研究结果表明,这些优化能有效降低设备的运行故障率,减少操作时间,从而提高生产效率和降低运营成本。未来的研究将集中于开发更精确的实时故障监测系统和基于AI的预测性维护策略,以进一步提高设备的自动化和智能化水平,满足全球可持续发展的需求。