简介:摘要:本文首先对高频振动的问题进行了综述;分析轨道的不平顺以及轮轨接触理论。取某型动车组进行试验,利用实验仪器设备m/wheel对动车组轮对进行镟修前、后不圆度测量。得出试验轮对动车二车3轴存在27阶多边形,最大幅值13dB(0.0045mm),在200km/h速度下的主振频率为548Hz,镟修后高阶多边形消失。对该型动车组进行线路试验,结果表明,总体状态良好,镟修前后轮对测点的振动加速度最大值56.31g;轴箱振动加速度最大值31.88g;构架横向、垂向振动加速度最大值0.36g与2.3g;车体横向、垂向平稳性最大值2.06与3.11;一系垂向最大位移10.4mm。通过分析振动加速度全程时频图,发现轴箱、构架、车轴存在主要频率有:轮对弯曲频率80Hz、26~27阶车轮多边形频率540Hz、波长80mm轨道波磨频率720Hz、动车组固有频率800Hz、波长60mm~70mm的钢轨波磨频率800~900Hz。
简介:摘要:短波不平顺一般引起车辆系统高频振动和冲击振动,引起轮轨噪声和疲劳破坏。对不同类型的轮轨短波不平顺进行分析,仿真计算同一车型在不同类型的轮轨不平顺激励下的振动响应,同时基于现有滚动制动试验台实现短波不平顺模拟提出建设性意见。
简介:摘要:随着国内城市经济快速增长,大量人口涌向城市,城市地面交通压力的加剧,城市交通资源与人们出行的需求矛盾日益突出。为了保证城市的自身发展,提高土地利用率、缓解地面交通压力,改善居民环境,地铁成为解决城市交通问题的首选。同时,地铁具有运载能力强、高效快捷、安全舒适、准点运行的优势,地铁的优势越来越明显。近些年来,随着城市地铁大规模兴建,地铁运行过程中产生的振动和噪声问题会不同程度的影响着乘客乘车的舒适性和周围居民的生活环境,如何做好降低地铁产生的振动和噪声一直是困扰地铁工程建设及运营维护的难题,因此,轨道减振降噪及优化轮轨关系的研究对于城市地铁具有重要意义。