学科分类
/ 4
62 个结果
  • 简介:村支书孙文杰万万没有想到,当着县长的面吹嘘了一句,会给自己带来这么多麻烦。当然,这样的麻烦对于富裕的村来说是求之不得的,可是对于穷得无夜火烧的枫木寨来说,无疑是雪上加霜。那天,县长到枫木寨来调研生猪生产工作,在与村干部交流中提出在新农村建设上要注重加强农民的学习教育。孙文杰为了取晚领导,随口编造了枫木寨“政治夜校”的作用。说老百姓白天下地干活没空,就利用晚上的时间来学习,每五天学习一次。为了充分调动广大党员干部的积极性,一改过去村支书一人“唱独脚戏”的做法,将村里的致富能人、外出打工回来“视野开阔”青年轮流请上台当老师。按照“人人备课、个个授课、互相学习、共同提高”的要求……

  • 标签: 学习教育 停电 新农村建设 生产工作 干部交流 党员干部
  • 简介:星期天的晚上,我正在家里看电视,屏幕突然一下黑了,灯也熄了,屋子里顿时陷入一片黑暗。胆小的我紧紧抱着沙发上的靠垫不敢动。“伊诺,好像整个小区都停电了,你在沙发上吗?爸爸在哪儿?”妈妈的声音很快响起。“我在书房呢!”爸爸扯着嗓子喊道。

  • 标签: 停电 星期天 看电视 沙发
  • 简介:

  • 标签:
  • 简介:从电力安全运行的角度,随着电压等级的逐渐提高,电网规模越来越大,电力系统的安全稳定运行就显得尤为重要.即使如此,大停电时有发生,其给社会生产生活造成的巨大损失.归结大停电的原因往往是曲异常导致潮流越限,进而引起故障转移;当故障转移之后,继电保护切除故障的时候发生误动作使系统的稳定性受到极大的威胁,从而导致系统发生失步,解列装置动作将互联的系统分裂开,是各部分之间的电气联系减弱导致了大停电.特高压输电工程能够满足我国未来快速的电力增长需求,满足电网规模逐步扩大、跨区联网基本形式的网络连接要求,增加网架的抗风险能力;但是特高压技术在实际应用中还存在很多问题.本文对高压输电、新型直流输电(HVDC-Flexible)和自适应继电保护等若干减小大停电发生的关键技术来进行深入探讨.

  • 标签: 智能电网 换流变压器 自适应继电保护 新型直流输电
  • 简介:目的:优化玄参的提取工艺。方法:以3种环烯醚萜苷(桃叶珊瑚苷、哈巴苷、哈巴俄)和3种苯丙素类(毛蕊花糖苷、安格洛苷C、肉桂酸)的总峰面积为响应值,在单因素试验基础采用Box-BehnkenDesign响应面法对甲醇浓度、液料比、超声时间进行优化。结果:最佳提取艺条件为甲醇浓度88.15%,液料比36.23,超声25.65min。在此条件下提取总面积预测值为3.12×10^6,采用改良条件(甲醇浓度88%,液料比36,超声提取26min)进行验证实验,测得值为3.11×10^6,实测值与理论值偏差小于1%。结论:响应面法可用于玄参活性成分的提取工艺的优化。

  • 标签: 玄参 环烯醚萜苷 苯丙素 响应面法 提取工艺
  • 简介:介绍了用于埋地电缆高空电磁脉冲(HEMP)响应计算的传输线模型,研究了地下透射HEMP环境与土壤电导率及透入深度的关系,计算了埋地1m的电缆端点在短路条件下的感应电流。结果表明:土壤电导率越大,透入深度越深,电场的衰减越大,电缆的感应电流越小;垂直极化波的感应电流在方位角为0°、入射角为45°时达到最大;水平极化波的感应电流在方位角为90°、入射角为90°时达到最大。

  • 标签: 高空电磁脉冲 埋地电缆 土壤电导率 感应电流 耦合
  • 简介:采用H/V谱比法,利用安徽强震台网记录的波形数据,计算了3个强震台的场地响应.结果表明,当台站场地为基岩或覆盖层较薄时,由地脉动和S波数据分别计算出的谱比曲线一致性很好.当覆盖层大于30.5m的时候,两者的放大因子有差异,即用S波计算的场地放大响应要明显大于用脉动计算的场地响应.

  • 标签: 强震台网 强震动记录 H V谱比法 场地响应
  • 简介:利用CSTMWS软件建立了引信弹体模型,利用高斯脉冲激励,一次仿真计算,得到了引信天线端口的时域和归一化频率响应。通过改变平面波传播方向及弹体长度,得到了不同仿真结果。仿真结果表明:当平面波传播方向与弹体轴线平行且电场极化方向平行于T型天线平面时,引信天线端口的谐振点一定频率范围内的频率响应及时域响应峰值均有最大值;当弹体长度超过一定范围,弹体截断长度对引信天线能量耦合的影响可以忽略。

  • 标签: CST MWS 电磁辐照 无线电引信 能量耦合
  • 简介:摘要血液透析过程中常遇到断水断电问题,这种万分紧急状态下,既不能让病人的生命受到威胁,又不能浪费病人血液,需要积极应对,大胆处理,采取临床实用应急措施予以解决。

  • 标签: 血液透析 停水停电 故障 措施
  • 简介:随着行车速度与交通量不断增加,荷载不断加重,桥梁的移动荷载响应越来越得到人们的重视.考虑移动车辆的惯性效应与桥梁的阻尼效应时,需要把车辆荷载简化为移动质量进行研究,这时得到的控制方程是变系数偏微分方程,在数学上通常难以精确求解.经分离变量与模态叠加后,化为变系数常微分方程组.本文利用WKB法,得到了近似的动力学响应,并与数值解、移动常力、Inglis解进行了比较.

  • 标签: 简支梁 移动质量 WKB法
  • 简介:在乙醇体积分数、提取温度、液料比和提取时间4个单因素试验的基础上,采用响应面法对银杏黄酮提取条件进行优化,考察各因素的影响效应及其交互作用,得出银杏黄酮提取的回归方程,确定最佳提取工艺条件为:提取温度78.6℃,乙醇体积分数72.95%,提取时间2.24h,液料比36.47(mL/g)。在此条件下黄酮提取率预测值为1.299%,与试验值1.291%基本一致。

  • 标签: 银杏叶 提取 黄酮 响应曲面 乙醇
  • 简介:采用微波法辅助提取苦参总黄酮,以乙醇体积分数、提取时间、液料比及微波功率为自变量,苦参总黄酮提取率为评价指标,采用Box-Behnken试验设计及响应面法分析优化提取工艺条件.结果表明,最优提取工艺为乙醇体积分数80%,提取时间6min,液料比25:1(mL/g),微波功率400W.在此条件下,黄酮提取量达到12.67mg/g.

  • 标签: 响应面法 苦参 总黄酮
  • 简介:收集了青海6个钻孔应变台站资料,对青海玉树7.1级地震、日本9.0级地震和四川芦山7.0级地震进行同震响应和震后效应特征进行对比分析,得出的结论是钻孔应变同震响应出现阶变的起始时间与地震波到达的时间基本一致,属于同震变化,应变阶跃随震源方位、震级等因素有较好的比例关系。

  • 标签: 钻孔应变 青海地区 同震响应
  • 简介:摘要当双回线路改造不能同时停电时,采用临时塔,不影响企业的正常生产运行。

  • 标签: 同塔双回 不同时停电
  • 简介:摘要85后知识员工正逐渐成为企业的骨干层乃至核心层,如何做好对他们的使用与激励,让他们真正成为团队的中坚力量,实现平稳交接,是每个管理者都不能回避的课题。

  • 标签:
  • 简介:在架空多导体传输线高空核爆电磁脉冲(HEMP)响应建模计算中,研究了不同参数的选取对响应计算结果的影响。首先利用链参数矩阵法对110kV线路进行建模,在模型中将线路端接设备等效为一系列互相连接的电容,计算了不同电磁波入射角Ψ、地面电导率σg和线长L下的线缆末端的响应电压和响应电流,分别归纳分析了3个参数与线缆响应幅值之间的关系。结果显示,随着入射角的增大,线缆末端的响应幅值均呈现出先变大后变小的趋势,当Ψ约为1°-5°时,达到极大值;线路长度较短时,线路末端的响应幅值随长度的增长而变大,当线长超过一定值后,线路响应则不再随线长的增长而变大。

  • 标签: 电磁脉冲 场-线耦合 多导体传输线
  • 简介:本文提出了一种将高分辨率阵列侧向和方位电极系综合在一起的三维侧向测井电极系3D-LS,该电极系具有径向、纵向和周向探测能力。通过有限元数值模拟计算,考察了井眼尺寸、冲洗带电阻率、侵入深度、层厚及围岩电阻率对六种不同探测模式的影响,确定了电极系尺寸和探测特性。分析伪几何因子,低侵时电极系的探测深度最深可达1.5m,其值接近斯伦贝谢双侧向电极系深探测深度,而大于高分辨率方位侧向成像仪深探测深度,并且三维侧向测井电极系可提供多条径向不同深度曲线,可更好地描述地层侵入剖面。无限厚地层条件下,方位电极可识别出厚度0.1m的异常体,利用方位侧向曲线半幅点对应异常体厚度判断,对异常体纵向分层能力可达0.5m。高阻背景下,异常体的电阻率越低,越靠近井眼,方位越大于15度,越易被方位电极探测。数值模拟结果为后续三维侧向测井电极系的研究奠定了基础,对低阻异常评价具有一定的指导意义。

  • 标签: 三维侧向测井 电极系 数值模拟 有限元法 探测特性 低阻异常
  • 简介:通过原位进行控制、低氮和高氮(0,60,240kg/(hm^2·a))3个氮添加处理,采用挖壕沟法区分自养呼吸,研究板栗林土壤不同组分呼吸对氮添加的响应机制.结果表明:1)氮添加处理对土壤温度和湿度的影响均不显著(P>0.05);2)在控制处理样地中,土壤呼吸、异养呼吸和自养呼吸速率分别为(3.47±0.09)、(2.26±0.10)和(1.21±0.16)μmol/(m^2·s),土壤不同组分呼吸对氮添加处理有不同的响应,低氮添加显著促进了土壤呼吸及不同组分呼吸(P<0.05),高氮添加则显著抑制了土壤呼吸及异养呼吸(P<0.01),而对自养呼吸无显著影响(P>0.05);3)在控制处理样地中,土壤呼吸、异养呼吸和自养呼吸的Q10值分别为2.44、1.93和4.10,氮添加处理可显著降低自养呼吸的Q10值(P<0.05),而对土壤呼吸和异养呼吸无显著影响(P>0.05).

  • 标签: 板栗林 氮添加 土壤呼吸 土壤不同组分呼吸 Q10值