简介:关于二元函数在一点的全微分存在的判别条件,一般教科书都是要求两个一阶偏导数在该点处连续(参见[1])。文献[2]削弱了这个条件,只要求其中一个一阶编导在该点处连续,文献[3]给出了全微分存在的另一个条件:要求两个一阶偏导数在该点的一个邻域内存在(但不要连续),及在邻域内至少存在一个有界的二阶混合偏导数。容易说明,〔2〕、〔3〕中判别条件的适用范围并不完全一样.从而〔2〕、〔3〕给出的都只是充分条件而非必要条件.讫今为止,尚未见到关于全微分存在的充分必要条件.本文将偏导数和全微分联系考虑,得到一个全微分存在的充分必要条件.作为这个充要条件的推论,可立即得出〔2〕、〔3〕中的判别条件.
简介:[摘要]微分方程是高等数学里面的重要内容,其相关计算是考试中经常出现的考点。本文将从函数极限的角度出发,讨论一类微分方程的简便解法。
简介:对于一类系数为指数型函数的Riccati微分方程y’=P(x)y2+Q(x)y+R(x),当P(x)、Q(x)和R(x)是指数型函数时,得到了此类方程特解存在的条件,并给出相关的应用.