学科分类
/ 1
10 个结果
  • 简介:[目的/意义]随着自动、数智技术的快速发展及其相关技术在肉牛养殖上的逐步推广利用,肉牛智能养殖技术研究也取得了一定进步.肉牛的生理指标如运动量、体温、心率、呼吸频率,以及反刍量等变化反映了肉牛的健康或亚健康状态.基于多种传感器采集到的数据以及机器学习、数据挖掘及模型化分析等技术的利用,肉牛的生理指标可由智能感知装备尤其接触式设备自动获取并用于发情、产犊、健康和应激的监测.[进展]针对肉牛养殖过程生理指标的智能监测技术及其利用价值进行了系统分析,分析了生理指标监测技术在实际生产中的应用现状,总结了肉牛生理指标监测的难点和挑战,并提出了未来发展方向.[结论/展望]肉牛生理指标的智能监测与利用既提高数据采集的时效性和准确性,有利于提高一线人员工作效率,促进肉牛养殖的智能水平及健康养殖水平.结合当前中国肉牛实际饲养..

  • 标签: 肉牛生理指标人工智能智能监测传感器数据融合
  • 作者: 杨霖1 刘双印2 徐龙琴3 赫敏2 绳庆峰2通讯作者 韩佳伟4
  • 学科: 农业科学 > 农业基础科学
  • 创建时间:2024-10-21
  • 出处:《智慧农业(中英文)》 2024年第04期
  • 机构:1.仲恺农业工程学院 信息科学与技术学院,广东广州 510225,中国;北京市农林科学院信息技术研究中心,北京 100097,中国2.仲恺农业工程学院 信息科学与技术学院,广东广州 510225,中国;仲恺农业工程学院智慧农业创新研究院,广东广州 510225,中国3.仲恺农业工程学院 信息科学与技术学院,广东广州 510225,中国;仲恺农业工程学院广州市农产品质量安全溯源信息技术重点实验室,广东广州 510225,中国4.北京市农林科学院信息技术研究中心,北京 100097,中国
  • 简介:[目的/意义]冷链配送碳排放动态预测是企业碳排放精准评估及其绿色信用等级评定的重要依据.本研究面向车辆碳排放受路况信息、行驶特征、制冷参数等多因素影响,提出一种融合多源信息的冷藏车辆碳排放动态预测模型.[方法]基于道路车辆数量与像素面积占比表征路况信息,构建基于改进YOLOv8s的路况信息识别模型,并以路况信息、行驶特征(速度、加速度)、货物重量、制冷参数(温度、功率)等为输入,构建基于改进iTransformer的冷藏车辆碳排放动态预测模型.最后与其他模型展开对比分析,分别验证路况信息识别与车辆碳排放动态预测的精度.[结果]改进的YOLOv8s路况信息识别模型在精确率、召回率和平均识别精度上分别达到98.1%、95.5%和 98.4%,比YOLOv8s分别提高了 1.2%、3.7%和 0.2%,参数量和运算量分别减少了 12.5%和31.4%,检测速度提高了5.4%.改进的iTransformer...

  • 标签: 冷链配送碳排放路况识别时序预测YOLOv8siTransformer多源信息融合渐进特征金字塔网络
  • 简介:[目的/意义]随着奶牛养殖业向规模、精准和信息养殖迅速发展,对奶牛健康的监测和管理需求也日益增加.实时监测奶牛的反刍行为对于第一时间获取奶牛健康的相关信息以及预测奶牛疾病具有至关重要的意义.目前,针对奶牛反刍行为的监测已经提出了多种策略,包括基于视频监控、声音识别、传感器监测等方法,但是这些方法普遍存在实时性不足的问题.为了减轻数据传输的数量与云端计算量,实现对奶牛反刍行为的实时监测,基于边缘计算的思想提出了一种实时对奶牛反刍行为进行监测的方法.[方法]使用自主设计的边缘设备实时地采集并处理奶牛的六轴加速度信号,基于六轴数据提出了基于联邦式与拆分式边缘智能这两种不同的策略对奶牛反刍行为实时识别方法展开研究.在基于联邦式边缘智能的奶牛反刍行为实时识别方法研究中,通过协同注意力机制改进MobileNet v3网络提出了...

  • 标签: 奶牛反刍行为实时监测边缘计算改进MobileNet v3边缘智能模型Bi-LSTM
  • 简介:[目的/意义]奶牛跛行检测是规模奶牛养殖过程中亟待解决的重要问题,现有方法的检测视角主要以侧视为主.然而,侧视视角存在着难以消除的遮挡问题.本研究主要解决侧视视角下存在的遮挡问题.[方法]提出一种基于时空流特征融合的俯视视角下奶牛跛行检测方法.首先,通过分析深度视频流中跛行奶牛在运动过程中的位姿变化,构建空间流特征图像序列.通过分析跛行奶牛行走时躯体前进和左右摇摆的瞬时速度,利用光流捕获奶牛运动的瞬时速度,构建时间流特征图像序列.将空间流与时间流特征图像组合构建时空流融合特征图像序列.其次,利用卷积块注意力模块(Convolutional Block Attention Module,CBAM)改进PP-TSMv2(PaddlePad-dle-Temporal Shift Module v2)视频动作分类网络,构建奶牛跛行检测模型Cow-TSM(Cow-Temporal Shift Module).最后,分别在不同输..

  • 标签: 奶牛跛行检测时空融合视频动作分类深度图像注意力机制TSM
  • 简介:[目的/意义]牛的体尺参数是反映牛身体发育状况的关键指标,也是牛选育过程的关键因素.为解决规模肉牛牧场复杂环境对肉牛体尺的测量需求,设计了一种图像采集装置以及体尺自动测量算法.[方法]首先搭建肉牛行走通道,当肉牛通过通道后进入限制装置,用英特尔双目深度相机D455对牛只右侧图像进行RGB与深度图的采集.其次,为避免复杂环境背景的影响,提出一种改进后的实例分割网络Mask2former来对牛只二维图进行前景轮廓提取,对轮廓进行区间划分,利用计算曲率分析方法找到所需体尺测点.然后,将原始深度图转换为点云数据,对点云进行点云滤波、分割和深度图牛只区域的空值填充,以保留牛体区域的点云完整,从而找到所需测点并返回到二维数据中.最后,将二维像素点投影到三维点云中,利用相机参数计算出投影点的世界坐标,从而进行体尺的自动计算,最终提取肉牛体高、十...

  • 标签: 肉牛体尺测量深度学习点云分割实例分割注意力机制Mask2former
  • 简介:[目的/意义]小麦叶片数是衡量植株生长状况、确定茎蘖动态、调节群体结构的重要指标之一.目前大田环境下小麦叶片计数主要依靠人工、耗时耗力,而现有的自动检测计数方法的效率与精度难以满足实际应用需求.为提高小麦叶片数检测的准确性,设计了一种复杂大田环境下高效识别小麦叶尖的算法.[方法]本研究以手机和田间摄像头获取的可见光图像构建了两种典型光照条件下出苗期、分蘖期、越冬期等多个生长期的小麦叶片图像数据集.以YOLOv8为基础网络,融合坐标注意力机制降低背景环境的干扰,提高模型对小麦叶尖轮廓信息的提取能力;替换损失函数加快模型收敛速度;增加小目标检测层提高对小麦叶尖的识别效果,降低漏检率.设计了一种适用于叶尖小目标识别的深度学习网络,通过检测图像叶尖数量从而得出叶片数.[结果与讨论]本研究提出的方法对小麦叶尖的识别精确率和mAP...

  • 标签: 小麦叶片叶尖识别叶片计数注意力机制YOLOv8深度学习
  • 简介: 摘要:在全球与可持续发展的背景下,现代烟草农业面临着提升产业竞争力和环境可持续性的双重压力。针对烟草农业多元技术的推广,文章深入探讨了现有的挑战,并提出了一系列构建多元技术推广体系的策略。

  • 标签: 现代烟草农业 技术推广 多元化技术
  • 简介:[目的/意义]准确高效地获取马匹体尺信息是马产业现代进程中的关键环节.传统的人工测量方法耗时长、工作量大,且会对马匹造成一定应激反应.因此,实现准确且高效的体尺参数自动测量对于制定蒙古马早期育种计划至关重要.[方法]选择Azure Kinect深度相机获取蒙古马双侧RGB-D数据,以YOLOv8n-pose为基础,通过在C2f模块中引入可变形卷积(Deformable Convolution v2,DCNv2),同时添加洗牌注意力机制(Shuffle Atten-tion,SA)模块和优化损失函数(SCYLLA-IoU Loss,SIoU)的方法,利用余弦退火法动态调整学习率,提出一种名为DSS-YOLO(DCNv2-SA-SIoU-YOLO)的模型用于蒙古马体尺关键点的检测.其次,将RGB图中的二维关键点坐标与深度图中对应深度值相结合,得到关键点三维坐标,并实现蒙古马点云信息的转换.利用直通滤波、随机抽样一致性(Random Sample Consensu...

  • 标签: 蒙古马体尺测量卷积神经网络注意力机制三维点云处理YOLOv8n-pose
  • 简介:摘要:近年来,国家粮食安全战略深入人心,政府与相关部门积极推动农业现代建设,创新小麦种植技术,优化小麦病虫害防治措施,提高小麦的品质与产量,实现农业现代转型升级。在此情况下,应对小麦种植技术进行创新、优化,只有这样才能够充分保障种植效果,增强病虫害防治能力,从而对社会发展提供有力的支持。基于此,深入分析了农业现代下小麦种植技术、病虫害防治措施,以期为相关人员提供借鉴。

  • 标签: 小麦 种植 病虫害 防治
  • 简介:摘要:退耕还林政策已实施多年,旨在改善生态环境的同时促进农村地区的可持续发展。自20世纪末以来,旬邑县积极响应国家关于退耕还林的号召,转变传统耕作为林业生态建设,推动地区生态恢复。然而,随着退耕还林项目的深入推进,怎样有效持续管理这些新生林地成为亟待解决的问题。本文阐述了退耕还林工程取得的显著成效,指出了退耕还林后续管理中存在的问题提出了退耕还林工程后续的管理建议及措施,为各县退耕还林工程后续管理提供参考。

  • 标签: 退耕还林 后续管理 森林抚育