简介:本文提出将原本用于地形渲染的GeometryClipmap技术应用到大规模海洋渲染上,并进行适当调整和改进,使之能更好地适用于动态的海洋场景。首先构建多细节层次的海平面二维网格,然后在相邻层网格之间进行拼接和过渡,接着使用Gerstner波合成随时间平滑移动的Displacementmap,最后二维网格根据Displacementmap更新网格顶点属性,得到具有动态波浪的大规模海洋场景。实验结果表明本文算法能够模拟得到很真实的海洋视觉效果,帧率可达到1720帧左右,CPU和GPU内存消耗分别为40M和30M。本文提出的将GeometryClipmap技术应用于海洋渲染的方法,具有很好的真实感、实时性和低内存消耗,对大规模海洋模拟具有一定的应用价值。
简介:海洋存在大量的生物多样性品种,以往人类主要从海洋生物资源中获得蛋白质,近年来,天然产物化学家开始从大量的海洋无脊椎动物如海绵,被囊动物,苔藓虫类及其其它如海藻等发现生物活性次生代谢产物,多种该类化合物具有强生物活性如抗肿瘤并已应用于临床研究,部分化合物则具有保护植物,(如天然杀虫剂)和作为天然化妆品配方的功能,本报告将报道具有新药开发前景的海洋天然产物的发展动态。在海洋中,生物活性分子通常作为化学保护以对抗环境的不利因素如被鱼软体动物吞噬,或竞争生存空间,本文将讨论从海绵中分到的天然产物的对鱼类的强拒食活性,众所周知,海洋无脊椎动物通常于各种海洋微生物包括细胞菌,真菌或微藻共生,这些微生物可能存在于细胞外,细胞内或存在于宿主细胞的核内,从结构特征看,海洋微生物可能参加了海洋无脊椎动物的代谢过程,因此,海洋天然产物化学家开始热衷于微生物天然产物-新药研究先导化合物的新资源的研究。
简介:重大疾病时刻威胁人类的健康。来自海洋生物资源的结构新颖的天然产物将成为开发新型药物的突破口,新型药物的研发需要高素质的人才参与。宁波大学海洋学院开设海洋药学专业培养海洋药物研发人才和生物制药产业技术人才。海洋药学专业作为新兴学科,基于化学和药学的基础知识,使学生掌握化合物的结构特征、学会利用海洋药用生物资源、掌握多种专业技术,包括分离纯化、结构鉴定、分子对接与结构改造、药理活性评价、药物制备工艺、熟悉经典海洋药物的研发过程和新药申报流程;采用多种学习方式构建“早参与一多实践.强能力”的培养模式训练学生的创新能力,强化专业英语的阅读能力培训,培养学生独立思考和解决问题的能力。
简介:海洋生物毒素是海洋生物活性物质中发展最迅速的重要领域之一,也是海洋新型药物研究的热点。而其中的多肽蛋白类毒素则是其中毒性最强的毒素,这些海洋多肽毒素特异的作用于离子通道或分子受体的亚型,从而具有特定的生理活性,如镇痛、强心、降压、抗病毒、麻醉等。因此,海洋多肽毒素成为临床用药物的重要来源同时,海洋多肽毒素作为分子探针,也是神经科学上用于研究离子通道或分子受体亚型结构与功能的强大工具。比较有代表性的海洋多肽毒素包括:海葵毒素、芋螺毒素、海蛇毒素、水母毒素、刺毒鱼毒素等。本文以当前发展迅速、应用广泛的芋螺毒素、海葵毒素、海蛇毒素为代表,对当前的海洋多肽毒素的研究现状进行了综述,并结合先进的科学方法,探讨海洋多肽毒素的研究技术及方法。
简介:海洋是生命的最初发源地,海洋面积占地表面积的70.8%,体积占生物圈的95%,地球上动物界的32个门类中,有23个门类生活在海洋中.海洋中还有大量的海生藻类和微生物,粗略估计较低等海洋生物物种约为15~20万种.海洋不仅是巨大的物质宝库,又是潜力巨大的天然药源.海洋生物的多样性、复杂性和特殊性使源于其中的海洋天然产物也具有多样性、复杂性和特殊性,这正为寻找海洋生物活性物质提供了丰富的物质来源[1].海洋药物具有抗肿瘤、抗病毒、抗心脑血管疾病、抗衰老、消炎镇痛等多种生物活性.向大海索取更多的药品,造福于人类的健康,已成为人们普遍关注的新课题,也是海洋资源开发利用的重要内容之一.