简介:采用溶胶-凝胶法,制备了不同钴含量的钴钼超细粒子氧化物,将其与K2CO3干混后进行硫化。使用X-射线衍射(XRI)和扩展X光吸收精细结构(EXAFS)对样品进行结构表征。同时测试硫化态样品的CO加氢合成低碳混合醇性能。结构表征结果表明,不含钴的氧化态样品,主要以颗粒度较大的MoO2物种存在;添加钴后,样品粒子的颗粒度大幅度降低,钴钼组分主要以CoMoO3物种的形式存在,当钴含量增加时,CoMoO3的晶形趋于改善。硫化态样品中钼以类似于MoS2物种的形式存在,但粒子尺寸较小。同时,体系中还存在Co-Mo-S和Co9S8物种。XRD和EXAFS结果表明,适量钴的添加,有利于样品的硫化。活性测试表明,钴的加入,明显促进的含量也最高。结合结构表征结果,认为钴是以协同作用的方式参与反应。
简介:采用XAFS方法研究浸渍法制备并于低温焙烧的CuO/γ-A12O3催化剂的局域结构。对于CuO负载量小于单层分散阈值的CuO/γ-A12O3(0.4mmol/100m2),结果表明CuO物种是以层状分散的孤立原子簇存在于γ-Al2O3载体表面,其第一近邻Cu-O配位环境的结构与晶态CuO的相似,键长和配位数分别为0.195nm和4。对于CuO负载量等于单层分散阈值的CuO/γ-A12O3(0.8mmol/100m。),已有少量的CuO纳米颗粒生成。对于CuO负载量大于单层分散阀值的CuO/γ-A12O3(1.2mmol/100m2),其结构与多晶CuO的相近。基于CuO在γ-A12O33载体上的三种不同分散状态的结构特点,我们提出了CuO/γ-A12O3催化剂的结构模型。
简介:采用程序升温氮化的方法制备了钼氮化物催化剂,并用EXAFS方法研究了氮化前后Mo原子的局域配位情况。负载MoO3样品的径向结构函数中有三个峰其中前两个峰对应着最近的Mo-O配位壳层,但是第一个峰与第二个峰的比例比晶体MoO3中的比例大很多,表明分子筛负载的MoO3具有更紧密的结构。氮化以后,Mo2N样品的径向结构函数中有三个峰,对应于一个Mo-N和两个Mo-Mo配位壳层,与面心立方模型符合的很好。根据X射线衍射和EXAFS谱的计算表明,Mo2N中的N原子使Mo-Mo键拉长并削弱。分子筛负载的Mo2N样品具有与非负载Mo2N样品相似的径向结构函数,只是对应于Mo-N壳层的峰较弱,表明负载的MoO3更难氮化。
简介:原位XAFS方法研究NiB纳米非晶态合金在78K至573K温度范围的结构特点。结果表明:在78K时,NiB样品的第一配位峰的位置和强度分别为2.06A、396.4,其强度只有Ni箔第一配位峰强度的25%左右;300K时,第一配位峰的位置和强度分别2.08A、255.9;573K时,第一配位峰的位置和强度分别为1.87A、155.4。温度从78K升至300K,第一配位峰的位置变化不大,但峰强度降低35%左右:温度继续升至573K时,峰的位置较78K的向小的方向移动0.20A,并且强度降低了60%。这表明随着测量温度的升高,NiB纳米非晶态合金中Ni原子周围的热无序度显著增加。
简介:原位XAFS方法研究NiB纳米非晶态合金在78K至573K温度范围的结构特点。结果表明:在78K时,NiB样品的第一配位峰的位置和强度分别为2.06A、396.4,其强度只有Ni箔第一配位峰强度的25%左右;300K时,第一配位峰的位置和强度分别2.08A、255.9;573K时,第一配位峰的位置和强度分别为1.87A、155.4。温度从78K升至300K,第一配位峰的位置变化不大,但峰强度降低35%左右;温度继续升至573K时,冷的位置较78K的向小的方向移动0.20A,并且强度降低了60%。这表明随着测量温度的升高,NiB纳米非晶态合金中Ni原子周围的热无序度显著增加。