简介:分析产生瓦斯爆炸的基本条件,指出在绝对瓦斯涌出量为5~75m^3/min或更大的轻度瓦斯突出的异常情况下,风筒送入的风与突出的瓦斯混合,会在较长巷道内形成大量的瓦斯浓度处于爆炸上限与下限之间的可爆混气.风量越大,形成的可爆混气体积越大,如400m^3/min的风量在2min内就可形成≥842m^3的可爆混气.遇火源可发生强烈的爆炸甚至爆轰,造成较大的伤亡甚至整个矿井内大部分人员死亡.这表明,加大加强的风量对防止煤矿瓦斯爆炸起副(反)作用.这种副作用已在试验巷道用天然气爆炸试验中得到证明.目前煤炭界采取的各种措施不能有效地消除加大加强风量引起的副(反)作用.提出了2种消除副作用的措施,即瓦斯传感器断电与复电方法和抽吸方法,并经试验证明是有效的.
简介:隧道通风数值计算中定义壁面粗糙程度的参数由粗糙高度和粗糙常数构成,参数的选取很难利用数学推导的方式进行研究。依托衢宁铁路鹫峰山隧道的施工通风项目,采用数值模拟并结合现场实测数据研究了隧道内壁面粗糙度的评定方法、取值和工程应用。结果表明:隧道壁面平均粗糙高度由隧道内实际开挖轮廓线和设计开挖轮廓线之间包络的面积与取样长度的比值确定,计算得到了隧道横断面平均粗糙高度为0.191m,纵向平均粗糙高度为0.231m;建立了粗糙常数Rc与粗糙单元间距、形状的关系,同时得到基本模型对应的Rc计算公式;基于典型理想壁面模型,以原模型面积减去理想模型的面积(绝对值)除以原模型面积所得值最小定义了最优简化模型,提出了关于壁面粗糙常数取值的计算方法,并以此计算出鹫峰山隧道壁面粗糙常数Rc为0.46。最终根据Rh和Rc的取值,采用三维数值模拟,分析了隧道内CO质量浓度不同时间段的分布规律。由于压入式通风自身的缺陷(无法突破长度瓶颈),且受现场布置及施工方式所限,通风距离超过3000m很难满足施工条件的需要,无法达到规定的洞内作业环境条件。因此,急需对现有的通风方式进行优化和调整。