简介:在液氧/煤油火箭发动机地面试验中,为得到液氧贮箱放气系统放气流量与放气阀门动作的响应特性,从而控制箱压的下降速率,验证液氧煤油发动机在低入口压力条件下的工作适应性,对液氧贮箱放气系统的动态特性进行了研究。建立了液氧贮箱二维计算模型,结合试验数据,对低温贮箱内气枕空间的非稳态换热过程进行研究,确定放出气体温度以及相应状态。应用CFD的动网格技术,建立二维计算模型,对放气系统阀门的开关动态特性与过流流量特性进行综合分析,获得了不同通径放气管路的放气流量与箱压的计算关联式,基于理想气体状态方程,完善了箱压计算理论模型。应用该模型量化分析箱压下降速率,为计算箱压控制的准确时间节点提供了操作参考。
简介:空间航天器的推进装置,因一系列的技术要求,在历史上就趋于专业化.这些技术要求往往不适用于地面系统.这些特殊要求包括:安全性-推进剂常常是较危险的,如有毒、有害、易燃或压力高等;特殊的环境-热环境、机械环境、辐射和失重状态;可靠性-一旦进入轨道,就不可能再有机会更换出了故障的装置.推进系统装置可分为两类:推进剂贮箱和火箭推力器.它们除了应用于空间技术,在其它方面并无用处.因此"商用成品化"(COTS)的思维似乎不太合适.然而,通过工程改进推进系统,COTS在材料和加工方面可降低成本和风险.本文将描述推进装置的典型应用并介绍萨里太空中心是如何使用COTS理念的.推进系统的管路是由各种用电子和机械控制的电磁阀、压力传感器、压力调节器、过滤器和温度传感器等构成.它们既可作为空间项目的特殊工程进行研制,也可采用COTS作为航天设备的替代产品,萨里太空中心侧重于后者.通过有所创新的系统设计,COTS装置完全可以使用.
简介:基于MESSENGER飞船的需要,开展了一种新型超轻贮箱的设计、制造和试验工作,整个过程分方案论证、分析与设计以及制造与试验三个阶段.第一阶段考虑了50多种贮箱结构,反复分析后确定了一种最有效的方案;第二阶段致力于防漩器、防晃板和贮箱壳体的设计与分析,包括用缩尺模拟试验确定防晃板的数目、尺寸与安装位置、防漩器和防晃板的载荷分析与结构分析以及壳体应力与断裂力学分析;第三阶段制造了一个鉴定试验用贮箱(以下简称试验贮箱)和四个飞行贮箱(三个飞行、一个备用).贮箱壳体、防漩器和防晃板分别采用固溶处理和时效(STA)的6AL-4V钛合金材料、6AL-4V钛合金板和退火6AL-4V钛合金环.壳体由四条周向焊缝连接,其中两条焊缝具有STA特性,另外两条经过退火处理.五个贮箱采用相同的工序和工艺.试验贮箱必须经过正弦和随机振动试验的品质检验,该检验项目还包括具有破坏性的爆破压力试验.所有飞行贮箱在清理和交货之前要经过模拟飞行试验.飞行贮箱包括附属组件在内不得超过9kg.超轻贮箱对于MESSENGER飞船计划的成功将起到至关重要的作用.