简介:Theeffectofnanoparticleaggregationonthethermalconductivityofnanocompositesornanofluidsistypicallynonnegligible.Auniversalmodel(Maxwellmodel)includingnanoparticleaggregationismodifiedinordertopredictthethermalconductivityofnanocompositesmoreaccurately.Thepredictedthermalconductivitiesofsilicaandtitaniananoparticlepowdersarecomparedfirstwiththatmeasuredbyahot-wiremethodandthenwiththoseinpreviousexperimentalworks.Theresultsshowthatthereisgoodagreementbetweenourmodelandexperiments,andthatnanoparticleaggregationinananocompositeenhancesthethermalconductivitygreatlyandshouldnotbeignored.Becauseitconsiderstheeffectofaggregation,ourmodelisexpectedtoyieldprecisepredictionsofthethermalconductivityofcomposites.
简介:介绍拟稳态Maxwell方程在电气工程领域的可计算建模及应用。对于含导电材料的电磁设备,拟稳态Maxwell方程是描述电流密度分布和欧姆损耗的常用模型,在电机、大型变压器等电气工程设备和集成电路等微电子技术领域有广泛应用。以国际计算电磁学会公布的TEAMWorkshopProblem7和21基准族问题为例,阐述拟稳态Maxwell方程的可计算建模和自适应有限元计算。
简介:Inthispaper,aunifiedmodelfortime-dependentMaxwellequationsindispersivemediaisconsidered.Thespace-timeDGmethoddevelopedin[29]isappliedtosolvetheunderlyingproblem.UnconditionalL2-stabilityanderrorestimateoforderOτr+1+hk+1/2areobtainedwhenpolynomialsofdegreeatmostrandkareusedforthetemporaldiscretizationandspatialdiscretizationrespectively.2-Dand3-Dnumericalexamplesaregiventovalidatethetheoreticalresults.Moreover,numericalresultsshowanultra-convergenceoforder2r+1intemporalvariablet.
简介:Westudythepartialregularityofweaksolutionstothe2-dimensionalLandauLifshitzequationscoupledwithtimedependentMaxwellequationsbyGinzburg-Landautypeapproximation.Outsideanenergyconcentrationsetoflocallyfinite2-dimensionalparabolicHausdorffmeasure,weprovetheuniformlocalC∞boundsfortheapproachingsolutionsandthenextractasubsequenceconvergingtoaglobalweaksolutionoftheLandau-Lifshitz-Maxwellequationswhicharesmoothawayfromfinitelymanypoints.
简介:Analternateyetgeneralformoftheclassicaleffectivethermalconductivitymodel(Maxwellmodel)fortwo-phaseporousmaterialsispresented,servinganexplicitthermo-physicalbasis.Itisdemonstratedthatthereducedeffectivethermalconductivityoftheporousmediaduetonon-conductingporeinclusionsiscausedbythemechanismofthermalstretching,whichisacombinationofreducedeffectiveheatflowareaandelongatedheattransferdistance(thermaltortuosity).
简介:Inthispaper,weprovetheglobalexistenceoftheweaksolutiontotheviscousquantumNavier-Stokes-Landau-Lifshitz-Maxwellequationsintwo-dimensionforlargedata.ThemaintechniquesaretheFaedo-Galerkinapproximationandweakcompactnesstheory.
简介:这研究向动人的表面为三维的麦克斯韦液体集中于热和集体流动的Cattaneo-Christov理论。有可变热电导率的不可压缩的laminar流动被考虑。流动产生由于表的双向拉长。热和集体运输的联合现象被说明。热和集体散开的Cattaneo-Christov模型被用来开发精力和集体种类的表情。在集体种类方程的一阶的化学反应术语被考虑。边界层假设导致管理数学模型。homotopic模拟被采用设想无尺寸的流动方程的结果。速度,温度,和集中的图显示出不同产生参数的效果。一个数字基准被介绍设想计算结果的会聚的价值。结果证明集中和温度地为热和集体散开的Cattaneo-Christov理论被腐烂。
简介:Ahigh-orderleap-frogbasednon-dissipativediscontinuousGalerkintime-domainmethodforsolvingMaxwell'sequationsisintroducedandanalyzed.Theproposedmethodcombinesacenteredapproximationfortheevaluationoffluxesattheinterfacebetweenneighboringelements,withaNth-orderleap-frogtimescheme.Moreover,theinterpolationdegreeisdefinedattheelementlevelandthemeshisrefinedlocallyinanon-conformingwayresultinginarbitrarylevelhangingnodes.ThemethodisprovedtobestableundersomeCFL-likeconditiononthetimestep.Theconvergenceofthesemi-discreteapproximationtoMaxwell'sequationsisestablishedrigorouslyandboundsontheglobaldivergenceerrorareprovided.Numericalexperimentswithhigh-orderelementsshowthepotentialofthemethod.