简介:Inthispaper,wereportanexperimentaldemonstrationofenablingtechnologyexploitingresonantpropertiesofplasmonicnanoparticles,fortherealizationofwavelength-sensitiveultra-minituarized(4μm×4μm)opticalmetadevices.Tothisend,theexampleofa1.3/1.6μmwavelengthdemultiplexerisconsidered.Itstechnologicalimplementationisbasedontheintegrationofgoldcut-wire-basedmetalinesonthetopofasilicon-on-insulatorwaveguide.TheplasmonicmetalinesmodifylocallytheeffectiveindexoftheSiwaveguideandthusallowfortheimplementationofwavelength-dependentopticalpathways.The1.3/1.6μmwavelengthseparationwithextinctionratiobetweentwodemultiplexers’channelsreachingupto20dBisexperimentallydemonstrated.Theconsideredapproach,whichcanbereadilyadaptedtodifferenttypesofmaterialplanarlightwavecircuitplatformsandnanoresonators,issuitedfortheimplementationofagenericfamilyofwavelength-sensitiveguided-waveopticalmetadevices.
简介:WeproposeanddemonstrateawidelytunablepassivelyQ-switchedHo^3+∕Pr^3+-codopedZrF4-BaF2-LaF3-AlF3-NaFfiberlaseroperatinginthe2.8μmmid-infrared(MIR)wavebandbasedonasingle-walledcarbonnanotube(SWCNT)saturableabsorber(SA).TheSWCNTshavediametersrangingfrom1.4to1.7nm.ThemodulationdepthandsaturationintensityoftheSWCNTSAmeasuredat2850nmare16.5%and1.66MW∕cm^2,respectively.StableQ-switchedpulseswiththeshortestpulsedurationof1.46μsandthemaximumpulseenergyof0.43μJareachievedatalaunchedpumppowerof445.6mW.ThecombineduseofabroadbandSWCNTSAandaplaneruledgratingensuresabroadcontinuouslytuningrangeof55.0nmfrom2837.6to2892.6nm.Theoutputpowers,emissionspectra,repetitionrates,andpulsedurationsatdifferenttuningwavelengthsarealsocharacterizedandanalyzed.OurresultsindicatethatSWCNTscanbeexcellentbroadbandSAsinthe3μmMIRregion.Totheauthor’sknowledge,thisisthefirstdemonstrationofawidelytunablecarbon-nanotubeenabledpassivelyQ-switchedfiberlaseroperatinginthe2.8μmMIRwaveband.