简介:链路预测是网络信息挖掘的主要研究内容,通过对网络结构和其他信息的分析,挖掘缺失的链接或预测未来可能出现的链接。链路预测在推荐系统、社会网络和生物网络分析中有着十分广泛的应用。本文首先介绍了基于公共邻居、路径和随机游走的8种常用的链路预测指标.并在此基础上提出了一种基于这8种指标线性组合的度量指标,并经过实验找出了较好的优化参数。然后,提出了基于这8种指标的神经网络模型.并分别基于Weka平台和FANN库进行了实现。在社会网络的4个公开测试集上的实验结果表明.基于FANN库的神经网络模型的预测结果最好,在4个数据集上最高的AUC值分别达到了0。95l8、0.9289、0.7480和0.8677,与单一指标最好的AUC值相比分别提高了3.92%、1.45%、7.06%和24.35%。
简介:本文通过构造Lyapunov函数和利用不等式分析技巧,研究了具有时滞的细胞神经网络的稳定性,给出了与时滞无关的网络渐近稳定的充分判据,该判据可用于时滞细胞神经网络的设计与检验,有重要的理论意义与应用价值。
简介:以卷积神经网络为代表的深度学习算法在医学影像分析领域正引起广泛美注,并取得了令人惊叹的进步。为了进一步提高卷积神经网络在计算机辅助筛查肺结节应用的准确率,本文设计了2种改良的深度卷积神经网络,这些改进加快了神经网络的训练速度.有效地防止了算法的过拟合。相比只采用二维卷积核的其他检测模型,该模型能够有效地学习到CT影像三维重建后的图像特征。通过实验,改进的检测模型在LUNAl6数据集上的准确率明显好于其他模型,这种网络结构也可用于医学影像领域中其他三维图像的检测场景。最后,构建了一套适用于远程医疗的“计算机辅助肺癌筛查与诊断系统”,该系统能够自动检测出CT影像中肺结节,并给出结节的良恶性概率评估。通过该系统的应用,可以有效缓解放射科医生超高的劳动强度,提高阀片效率,服务更多患者;减少漏诊和误诊发生的次数,有助于提高肺结节的诊断准确率;从而促进我国肺癌早筛工作的推广。
简介:从模式识别的角度分析了搜索模式下水下运载体的重力匹配问题,利用模式识别神经网络实现重力匹配定位。在重力图匹配时,以惯性导航仪指示位置为中心规划真实位置的网格点搜索范围,从参考重力图上提取相应一系列的重力数据,与对应网格点的位置一起定义成多个模式类,构造相应的模式识别概率神经网络,运用该神经网络将实时重力测量数据识别到某个模式类,对比模式类的定义确定载体位置。在实测重力图上对重力辅助惯性导航系统进行了计算机仿真研究。结果表明,在重力场特征显著区域该重力匹配算法能够有效减小厄特弗斯效应的影响,其导航系统定位误差小于一个重力图网格,匹配率在80%以上,匹配效果优于一般的相关匹配算法。
简介:线性矩阵不等式的优良性质可用于解决细胞神经网络中的保性能控制问题.本文介绍了线性矩阵不等式的相关概念和性质;通过对Schur补引理的改进提出了一个引理,从而更容易将二次矩阵不等式转化为线性矩阵不等式,更好地应用于控制参数求解;提出了LMI的基本问题和MATLAB工具箱,并对LMI在细胞神经网络的保性能控制问题作出了简要描述.
简介:为了提高潜器导航定位精度,针对等值线算法在惯导系统初始误差较大时易发散的问题,提出基于概率神经网络调优的等值线改进方法。首先,在搜索区域内,利用概率神经网络算法对惯导系统航迹进行调优,并经过卡尔曼滤波器与惯导系统航迹进行信息融合形成待匹配航迹;在此基础上利用实时等值线算法得到最佳匹配位置。分别在不同初始条件下进行仿真分析,得出概率神经网络算法在大的初始误差下不易发散但定位精度不高的结论,然后在潜器行驶6h后,初始误差为5.438?的条件下进行仿真验证,结果表明,改进方法定位精度均值优于0.537?,从而证明改进方法是有效的,即使在大的初始误差下仍然能够达到较高的定位精度。
简介:基于解的充分必要条件,提出一类广义变分不等式问题的神经网络模型.通过构造Lyapunov函数,在适当的条件下证明了新模型是Lyapunov稳定的,并且全局收敛和指数收敛于原问题的解.数值试验表明,该神经网络模型是有效的和可行的.