简介:Richardson-Kolmogorov能量级串理论是湍流研究中最重要的基础理论,其中一个推论是能量的传输和耗散应当是均衡的,对应于耗散系数Cε为常数.然而近些年的实验及数值模拟都发现了不符合RichardsonKolmogorov能量级串理论的非均衡耗散律,即使在此区域内Reynolds数足够高,能谱满足Kolmogorov的-5/3标度律,Cε也不为常数,而满足Cε-ReI-m/ReL-n,其中m≈1≈n,ReI为入口Reynolds数,ReL为以积分尺度为特征长度的当地Reynolds数.近三年来又发现流向速度梯度扭率Sk和Lagrange速度梯度自相关的时间演化Φ'(ijij)也可以用来度量非均衡湍流现象,为非均衡湍流的研究开辟了新路.
简介:为了解决M/M/c模型在实际运用中模拟精度不高及使用范围有限的问题,本文立足系统状态变化与输入率和服务率的关系,通过引入输入概率和服务度,构建依赖系统状态的递进式输入率和服务率。递进式输入率和服务率通过研究系统实际运行状况设定临界值,其中输入率分为两阶段,服务率分为三阶段。此外,结合递进式输入率和服务率及排队论状态转移过程构建了递进式M/M/c模型,并采用后确定法确定模型参数。递进式M/M/c模型是M/M/c模型的扩展形式,提高了M/M/e模型的模拟精度,在一定程度上拓展了模型的应用范围。最后,通过一个生活实例验证了递进式M/M/c模型的优化性和实用性。