学科分类
/ 14
262 个结果
  • 简介:系统研究了具有急性慢性两个阶段的MSIS流行病模型.由两节构成,第1节建立研究了具有急慢性阶段的MSIS流行病模型;第2节在第1节的基础上建立研究了具有慢性病病程的MSIS流行病模型.第1节的模型是四个常微分方程构成的方程组.第2节的模型既含有常微分方程,又含有偏微分方程.运用微分方程积分方程中的理论方法,得到了这两个模型再生数()0的表达式.证明了当()0<1时,无病平衡态是全局渐近稳定性,给出了各模型地方病平衡态的存在性稳定性条件.

  • 标签: 流行病模型 病程结构 再生数 平衡点 稳定性 急慢性阶段
  • 简介:一、启发提问图6-51.如果6-5,在△ABC中,∠C=90°(1)如果∠A=45°,则a=.即:ab=,ba=.(2)如果∠A=30°,则c=a,b=a,即ab=,ba=.(3)如果∠A的大小一确定,那么abba是否也随之而确定呢?2.在△ABC△A′B′C′中,∠C=∠C′=Rt∠如果∠A=∠A′,则aba′b′反之如果ab=a′b′,则∠A=∠A′吗?二、读书自学 P20~P23三、读书指导1.正切、余切的意义如图(5)中,在△ABC中,∠C=90°,则:∠A的正切记为:tgA=∠A的( )∠A的( )∠A的余切记为:ctgA=∠A的( )∠A的( )其中∠A的大小一定,则tgA,c

  • 标签: 三角函数值 修正值 变化规律 读书指导 读书自学 正切值
  • 简介:一、启发提问1.如图6-1,在△ABC中,∠C=90°.(1)如果∠A=30°,则ac=,bc=.(2)如果c=2a,则∠A=,∠B=.图6-1       图6-2  2.如图6-2,在△ABC中,∠C=90°.(1)如果∠A=45°,则ac=,bc=.(2)如果a=b,则∠A=,∠B=.3.在Rt△ABCRt△A′B′C′中:∠C=∠C′=90°.(1)如果∠A=∠A′,那么:BCAB=B′C′A′B′成立吗?(2)如果BCAB=B′C′A′B′,那么:∠A=∠A′吗?从上面的问题中我们不难看出在直角三角形中:如果某一个锐角的度数一定,则相应的直角边与斜边的比值也就随之确定,反之也成立.

  • 标签: 正弦和 修正值 余弦关系 直角三角形 读书指导 读书自学
  • 简介:一、问题提出一家鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的鞋的销售量如下:鞋的尺码(单位:厘米)2222.52323.52424.525销售量(单位:双)12511731  在这个问题上,鞋店关心的不是鞋的尺码的平均数,而是关心哪种尺码的鞋销售得最多的问题。因而将产生一种新的特征数字来描述这组数据的集中趋势.二、阅读教材 P162-P165三、自学指导1.什么是众数?在一组数据中,的数据叫做这组数据的众数.本概念的特点:范围:在一组数据中对象:其中的一个数据特征:这个数据出现的次数最多.2.什么是中位数?将一组数据按排列,把处在的一个数据(或)叫做这组数据的中位数.本概念特点:方式:

  • 标签: 中位数 组数据 众数 集中趋势 出现次数 统计量
  • 简介:比例问题重庆綦江县赶水中心校谭世健设有a、b两数,当a≠0时,有a:b=a÷b=ab,可知,比与除法、分数有密切的关系。解比比例问题时,常常使用下面的结论。设总数=甲数+乙数,甲数:乙数=a:b(a,b为自然数),则(1)甲数是乙数的ab倍;乙...

  • 标签: 比和比例 小客车 大客车 工作效率 正方形 总人数
  • 简介:<正>证明一条线段是另外两条线段的是初中几何中经常会遇到的一类题目,解(证)题的方法也多种多样。努力把基本方法掌握好,就可以达到功到渠成、举一反三的目的,大大提高我们分析和解决问题的能力。下面通过几个例题加以说明。

  • 标签: 初中几何 基本方法 解决问题的能力 正方形 简单证明 两条线
  • 简介:当我们从小学启蒙开始,一学数学便和数字打起了交道。现在进入中学,学习代数,还要接触许多新的数学符号。这些数字符号结构十分合理,用起来十分方便,就像天生的一样。其实,数字和数学符号,是人类文明的一部分,那是人类祖先自己创造的。在学习初中数学之前,大体...

  • 标签: 代数符号 阿拉伯数字系统 印度 符号代数 数字符号 零的记号
  • 简介:一、问题的提出所谓中点弦问题,即已知一点一圆锥曲线,求以这点为中点的圆锥曲线的弦的方程.此问题按习惯解法是:设点斜式方程代入圆锥曲线,由韦达定理求中点,从而求出斜率得直线方程.此法运算量大,特别带参数时运算更繁,下面给出较简单的方法及证明.二、引理...

  • 标签: 中点弦 圆锥曲线 轨迹方程 取值范围 流动坐标 对称曲线
  • 简介:一、启发提问图7-461.如图7-46,圆心到直线l的距离就是半径OA,由上节知识可知直线l与⊙O,这里的直线l有两个限制条件,它们是,.2.圆的切线垂直于经过切点的.3.切线性质定理的两个推论的题设结论分别是什么?4.切线的性质定理及其两个推论的题设结论有什么关系?二、例题示范例1 已知:如图7-47,点C是⊙O的AB的中点,CD∥AB.求证:CD是⊙O的切线.分析 要证CD是⊙O的切线,根据判定定理只需要连结OC,证明OC⊥CD即可;用垂径定理由已知条件可知OC⊥AB,而AB∥CD,因此问题就得以解决.证明(略).图7-47      图7-48  例2 如图7-48,已知ABCD的

  • 标签: 圆的切线 判定定理 切线长定理 圆周角 性质定理 垂径定理
  • 简介:陈宝定老先生是我国著名算盘收藏家,50多年来,他已收藏古今中外算盘算尺近600种。鲜为人知的是,他还有一个“铁算盘”的美称。陈老1957年在江苏昆山农业银行当会计师,日日夜夜与算盘打交道,对算盘产生了特殊的感情,当时外国人使用手摇计算机还比不过他的算盘,从此

  • 标签: 铁算盘 手摇计算机 珍品 农业银行 《清明上河图》 江苏昆山
  • 简介:G.马克思教授规定了我今天讲话的题目是“中国的文化、科学学校”。这次会议是讨论学校教育的,按定义,学校是为传递延续给一定社会确认的知识传统而设立的公众单位。不同社会承袭着不同的民族传统,具有不同的文化背景,然而,现代科学已打破国家之间

  • 标签: 中国 古代文化 天文学 数学 培养目标 中学
  • 简介:本文详细介绍了测量电动势的四种典型电路以及每种电路电动势的测量计算的具体方法.

  • 标签: 电动势 典型电路
  • 简介:本文首先论述了有源磁悬浮在国内外的发展状况趋势,接着论述采用有源磁悬浮的目的对有源磁悬浮的要求,并对时分式直流反馈有源磁悬浮的工作原理、磁悬浮元件、磁悬浮系统的稳定性、时分模拟开关以及对反馈回路的方案进行了分析。实验结果表明,有源磁悬浮应用于陀螺加速度计对仪表精度的提高起到了关键性作用。

  • 标签: 磁悬浮技术 加速度计 惯性技术 模拟开关 反馈回路 元件结构
  • 简介:本文首先给出了Riemann引理及其三种证法;然后通过直接方法、变量替换方法多项式逼近的方法分别进行了证明.最后给出了Riemann引理的推广及其证明。

  • 标签: RIEMANN引理 多项式逼近
  • 简介:此文系由国际物理教育委员会(ICPE)主席E.L.Jossem,教授推荐,他认为这是一篇十分好的有关物理教育研究的总结性文章,读者可从此文章中了解美国物理教育研究工作的进展情况。认真细读此文,对大、中学物理教师都是很有裨益的.

  • 标签: 物理教育 中学物理教师 读者 文章 国际 教授
  • 简介:1997年诺贝尔物理学奖授予朱棣文(StevenChu)、科昂-唐努日(ClaudeN.Cohen-Tannoudji)菲利普斯(WilliamD.Phillips),表彰他们“发展了用激光冷却陷俘原子的方法”。这种方法可以帮助更精确地研究基本现象以及测量某些基本物理量。

  • 标签: 激光致冷 原子 诺贝尔物理学奖 基本物理量 激光冷却 朱棣文