简介:基于无穷维空间中的生存定理,我们研究了集值映象的不动点,得到了一个新的不动点定理,推广和改进了[1]和[5]中的相应结果。
简介:研究多值映象F取无界值时镦分包含生存轨道的存在性,证明了相应的生存定理.
简介:外人很难理解玩极限的人,这是一件常人看上去只有疯子才会做的事情.处处险象环生,随时可能高位截瘫.收获莫名其妙的乐趣,绝对疯狂的玩意儿,凌峰却乐此不疲。“从接触到极限运动的那天起,它就成了我的主要生活方式。”
简介:我们在无限维空间中研究微分包含的生存W-单调轨道的存在性,基于Zom引理,我们给出了—个逼近方法,在较弱的条件下得到了一个存在性定理,其特殊情形则包含了已有的生存定理和微分方程理论中的若干结果.作为应用,我们首先研究了微分包含生存解的整体存在性,得到了整体生存理.然后我们研究了微分包含解的稳定性,得到一些新的结果。
简介:考虑—个四缀块模型,其中一缀块里有三个竞争种群.另外三个分别是它们的避难所.并且种群能在争缀块和各自的避难所间相互扩散.在一定的条件下.我们给出了此模型的持续生存,周期性和全局稳定性.
简介:在给出了可靠性生存寿命分析几类重要随机截尾分布函数的基础上,讨论了寿命分布函数参数的最佳有效无偏估计,为解决可靠性生存寿命分析以及通讯工程和电力负载预测中的最佳无偏误差估计问题提供了令人满意的可靠依据和有效算法.
生存轨道与集值映象的不动点
关于生存定理的一个注记
极限态生存——病状特征:不怕死,不怕摔
Banach空间中微分包含的生存单调轨道与解的稳定性
具有避难所的非自治竞争系统的持续生存和全局稳定性
关于可靠性生存寿命分析中几类重要截尾分布函数参数的最佳有效无偏估计