简介:首先,研究了Erdos1合著网络的特征属性,一方面使用节点的度、介数、接近中心性来描述Erdos1合著网络节点重要性,另一方面使用特征向量中心性和本文提出的高阶度参数来描述Erdos1合著网络节点影响力;然后,分别用逼近理想解的排序(TOPSIS算法)算法和主成份分析(PCA)对节点重要性和影响力排序;最后,利用修改的网页排名(PageRank)算法讨论了网络科学原创性论文中最具影响力的论文。
简介:链路预测是网络信息挖掘的主要研究内容,通过对网络结构和其他信息的分析,挖掘缺失的链接或预测未来可能出现的链接。链路预测在推荐系统、社会网络和生物网络分析中有着十分广泛的应用。本文首先介绍了基于公共邻居、路径和随机游走的8种常用的链路预测指标.并在此基础上提出了一种基于这8种指标线性组合的度量指标,并经过实验找出了较好的优化参数。然后,提出了基于这8种指标的神经网络模型.并分别基于Weka平台和FANN库进行了实现。在社会网络的4个公开测试集上的实验结果表明.基于FANN库的神经网络模型的预测结果最好,在4个数据集上最高的AUC值分别达到了0。95l8、0.9289、0.7480和0.8677,与单一指标最好的AUC值相比分别提高了3.92%、1.45%、7.06%和24.35%。
简介:为了实现某型导弹小姿态惯性导航平台射前自标定,分析并建立了精确实用的小姿态导航平台静态误差模型,设计了转动控制与测漂电路,充分利用射向条件和平台稳定性,实现导航平台在全装弹状态下自动转动、锁定和测漂,并以加速度计和陀螺输出作为开环观测量,结合误差模型分离出各误差系数。通过对各种误差进行综合仿真分析,得到标定系数的相对误差不超过4%,其标定时间缩短为借助转台标定所需时间的40,满足了射前标定的精确性和快速性要求。方案在不改变现有装备的情况下,控制平台按照预设轨迹小角度旋转两次,仅分别在三个预设位置同时对三个陀螺进行测漂标定,适合实际导弹发射。
简介:惯性平台安装在舰船的过程中需要将惯性平台坐标系与舰船坐标系进行对准,也就是对惯性平台进行标校。当舰船在倾斜船台上进行建造时,由船台的倾斜角度造成水平测量仪器的测量误差对标校的结果有很大影响,尤其是在测量舰船横摇角时,会由于测量仪器的摆放带来误差。船台的倾斜角度为3°时,边长为100mm的水平测量仪器在测量横摇角时产生0.1°的测量方位误差(即水平测量仪器一端产生0.17mm位移),就会带来18.8″的测量误差。这对于高精度惯性平台的标校是不允许的。文中对在各种不同舰船姿态下,由测量仪器的摆放带来的误差进行了分析归纳。利用双自由度电子水平仪、高精度转台及TM5100A自准直经纬仪,对由于安装面倾斜带来的测量误差进行了验证试验。实验结果与计算结果吻合。